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EXPERIMENTAL  INVESTIGATIONS OF OPTICAL 
PROPAGATION IN ATMOSPHERIC  TURBULENCE* 

by 

Michael  Williams  Fitzmaurice 
Goddard  Space Flight Center 

INTRODUCTION 

The  study of optical  propagation  in  random  media  has  been  renewed with 

1 2 
increased  vigor  in  the  past two decades. The works of Chernov  and  Tatarski 

in  the  Soviet Union during  the 1950's rekindled  interest  and  advanced  the  state of 

knowledge so that many previously  unsolved  problems  became  rigorously 

amenable.  It  appears  that  these  efforts  were  motivated  primarily by a desire 

to  fill  theoretical  voids  in  the  classical  treatment of certain  problems in electro- 

magnetic  theory  and  acoustics.  Following  the  initial  realizations of the  laser, 

however,  these  studies  gained an increased  utility. It became  immediately 

apparent  that  attainment of the  exciting  goals  forecast  for  the laser would require 

that  it retain  it's  spatial  coherence,  temporal  coherence,  and high  energy  density 

over  the  propagation  path.  Clearly,  transmission  through  the  earth's  atmosphere 

would introduce a randomness  to  each of these  factors  and  thereby  impose  certain 

limits on performance  capabilities. During  the same  time-period,  increased 

emphasis on aerial photography from aircraft as well as satellite  platforms 

* 
Dissertation  submitted to the  faculty of the  graduate school of the  University of Maryland in 
partial  fulfillment of the  requiements for the  degree of Doctor of Philosophy, 1970. 
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generated a need  for  an  understanding of resolution  limitations  imposed by a 

turbulent  atmosphere. In  addition,  the  field of optical  astronomy  has  traditionally 

been  hampered by the earth's  atmosphere;  thus,  considerable  effort  has  been  ex- 

pended to  understand  the  causes  and  effects of the  turbulent  atmosphere upon 

earth-based  measurements. For all these  reasons,  the  monographs of 3 -6 

Chernov  and  Tatarski  aroused  considerable  interest  and have served as a starting 

point for much  theoretical  and  experimental  work on the  optical  propagation 

problem in the decade of the 1960's. In this  dissertation we shall - 

(1) Review  the  causal  mechanism  for  the  optical  propagation  problem (i.e. , 

the  random  refractive  index  field). 

(2) Summarize  the  more  important  theoretical  and  experimental  results now 

available. 

(3 )  Present  the  results of a group of new  experiments  which, it is hoped, 

will  clarify  certain  aspects of the  propagation  problem. 

The material is organized  such  that  Chapter 1 deals  with  items 1 and 2 ,  and 

Chapter 2 presents  the new experimental  work,  item 3 .  

2 



CHAPTER I 

THEORETICAL  CONSIDERATIONS 

1. I Optical Propagation Through Turbulence:  Problem Definition 

In general, a propagating  electromagnetic wave can  be  perturbed by many 

different  mechanisms.  Different  types of perturbation are treated  analytically 

by very  distinct  techniques which are sometimes  exact but  often  approximate. 

We now review  four  types of propagation  problems  so as to  define precisely  the 

problem  with which we are concerned  in  this  paper. 

The f i rs t  type is the free space  propagation  problem. Here a wave is launched 

into  an  evacuated  medium  and  progresses in accordance with the  classical wave 

results  obtainable  from  Maxwell’s  equations. In regions near obstacles,  diffrac- 

tion  theory with suitable  boundary  conditions is employed.  Usually,  Kirchhoff 

diffraction t h e 0 r y ~ 7 ~   i s  employed,  although  it i s  well known that  it is  an  approx- 

imate  technique  and, in fact,  has  some  internal  contradiction^.^,^^ Other 

approaches  such as the  Rayleigh-Summerfeld t h e ~ r y ’ , ~ ~ , ~ ~  are available  and 

are sometimes  employed. 

In the  second  type of problem we consider a material  medium which is 

characterized by constant  properties.  That is, the  medium  has a constant  com- 

position,  temperature,  pressure,  and  permittivity. No particles with sizes  greater 

than  the  molecular scale are present. In this  case, one  finds  that  the  molecular 
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matter is excited  into  oscillation by the  incident  wave  and  behaves as a collection 

of classical Hertzian  dipoles  with  radiated  fields which are calculable  from well- 

known f 0 r m u l a s . l ~ * 1 ~   T h i s  type of scattering  was  initially  treated by  Lord 

Rayleigh15,16  and is widely known as Rayleigh  scattering. 

In the  third  type of problem, we consider a medium  where  the  dominant 

perturbations  to a propagating  wave are caused by particulate  matter with scale 

sizes which are equal  to or greater than  the  wavelength of the  incident  radiation. 

A problem of this  type  has  been  solved by Miel' for  the  case of a plane wave 

incident on a spherical  particle of arbitrary  size and  permittivity.  The  scattered 

energy is expressed  in  terms of an infinite series of terms  representing  products 

of associated  Legendre  polynomials  and  spherical  Bessel  functions.18  Exact 

series and  useful and approximate  solutions are a~a i lab le .1~  In practice  the 

usefulness of either  result is limited by the knowledge available on particle 

size  distribution,  density,  and  composition  throughout the propagation  medium. 

A great  deal of information is available in these  areas for particular ~ a s e s . ~ O - ~ ~  

A fourth type of propagation  problem is the  subject of this  thesis.  Here 

the  medium is devoid of particulate  matter  and is characterized by zero con- 

ductivity  and  certain  other  average  properties  (composition,  temperature,  pres- 

sure,  permittivity, etc.) which  may be slowly varying  functions of position. We 

also  allow  the point-by-point values of the  medium properties  to exhibit small 

deviations  from  the  average. 

Physically,  this  propagation  problem  may  be  interpreted a s  follows: when a 

wave (e. g.,  plane  wave) is launched  into  the  turbulent  medium,  the small  deviations 

in  medium  properties which result  in  correspondingly  small  refractive  index 
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fluctuations  cause  the  wavefront  to  quickly  become  non-planar. For relatively 

short  distances  into  the  medium,  the  amplitude  along  constant  phase  surfaces 

remains  essentially  constant,  although  the  wavefront  distortion  grows  progres- 

sively  larger. It should be  clear  that,  for long enough propagation  paths,  the 

warping of the  equi-phase  surfaces  will  result  in a shaping of the  amplitude  dis- 

tribution  across  the wave. So, in general,  one  must  solve for the  complex-valued 

field  quantity u which satisfies the  linear  stochastic  differential  equation* 

where  the  wave  number k &,'A = d c  and n is the  refractive  index. 

The  field u depends  on  position  and time, i. e .  , n n(  r, t )- However, we 

account  for  the  time  dependence of n by letting  each n (  F, t ) , for i = 1,2, . . . , be 

\ 
considered a particular  realization of the  stochastic  process { n ( T ) >  . This as- 

sumption is clearly  valid,  since  the  time  constant  associated with changing spatial 
/ *  

distributions of n seconds) is much greater than  typical wave transit  times 

through  the  turbulence and the  wave  period. 
24-26 

In principle,  one could solve  the  problem (Eq. 1) for  each  realization n (F), 

catalogue  the  results,  and by monitoring  the  behavior of n( F) over  the  propagation 

path extract  the  precise  time  behavior of the  field u .  This, of course, is not 

practical,  since  the  number of realizations  is  ,infinite ["(Ti ,  t )  is continuous] 

and the  instrumentation  required  for  obtaining  instantaneous 

values of n over  the  entire  path is never  available.  Instead, we approach  the 

' .J 

~~ "" ~ ~ . .  ~ ~~ ~ 

* 
The justification for  using  this  equation as the  starting  point is given  in  Section 1.3.  

1 I . . , t '  
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problem  from a statistical standpoint  and  attempt  to  evaluate  certain statistics 

of u (mean,  variance,  etc.)  in  terms of the statistics of the  refractive index  field 

n(7) over  the  propagation  path.  Clearly  then, we must  inspect  the  index of re- 

fraction  fluctuations which occur in the  atmosphere,  their  parameter dependence, 

and  their  statistical  form.  This is carried out  in  the  next  section. 

1.2 Refractive Index Statistics  in the  Turbulent Atmosphere 

The  index of refraction of a i r  is expressible  in  terms of the  properties of 

27 
the air through  the  relations 

77 .6P  ( 0.0075)10-6 
n = 1 .0  f 1 7 -  

x 2  
, at optical  frequencies, (2) 

and 

7 7 . 6 P  3 . 8  
n = 1.0 f x - (1 - 0.0195 z ) ~ ,  at radio f requencies,(3) 

T2 

where P is atmospheric  pressure in millibars, T is absolute  temperature in  Kelvin 

degrees , h is wavelength  in microns, z is altitude  above sea level  in  thousands of 

feet, and a standard  atmosphere is assumed. We restrict  our  attention to 

the  optical  case, Eq. 2. In turbulent flow, the  pressure  fluctuations  have  been 

shown to  be  negligible*  and it can  therefore  immediately  be  concluded  that  devia- 

tions  in  the  optical  index are caused by microthermal  fluctuations. Our goal, 

then, is to determine the statistical  nature of the thermal  fluctuations. 

28 

~~ 

*Thi& point is   discussed  in  detail   in  Ref.  24, p .  208-210. 
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The  approach  used by Tatarski (which he states was  initially  formulated by 

29 
Obukhov and Kolmogorov ) first investigates  the  velocity  fluctuations  in a 

highly developed  turbulent flow. Highly developed  turbulent flow means  simply 

that  the  Reynolds  number  which  characterizes  the flow is much greater than  the 

Reynolds number at which the  transition  from  laminar  to  turbulent flow takes 

place.  The  results are most  conveniently  expressed in terms of the  structure 

function Di,  (T) of the  velocity  field  defined as 

30 

where  the V i  are the  components of the  velocity  vector  in  the x, y ,  z directions 

at  the point -fl , and  the Vi’ are the  same  quantities at the point T, r . So, in 

general, D i  (T) is a set of nine  functions which describes  the  intensity of the 

velocity  fluctuations of spatial  extent r or  less. Assuming  local  isotropy, 

express Dik  ( T )  as a linear combination of Dr  ( r )  andD, , ( r ) ,  where 

- 

and 

and  where Vr is the  component of the  velocity  field at  -Fl in  the  direction T, and 

V r ’  is the  same quantity at  the  other  measurement point T, + T . Similarly V ,  is 

the  component of the  velocity  vector at T, in a direction  perpendicular  to T , and 

V,‘ is the  corresponding  quantity at the point T, + F . Assuming  incompressible 

flow, Tatarski shows  through  dimensional  analysis  that both Dr ( r )  and D, ( r )  

grow as r2’3 for  spacings r much greater than  the  inner scale of turbulence  and 

much less than  the  outer scale. 

7 



We carry out the  analysis of temperature  fluctuations by considering 

temperature  to be a conservative  passive  additive  to  the highly  developed  turbu- 

lent flow. The  problem of determining  the statistics of the  resulting  micro- 

thermal  field  was  solved by O b u k h o ~ ~ ~  and Y a g 1 0 m ~ ~  and  yielded results  for  the 

structure function of the  temperature field: 

and 

1 %  3 5 r z ,   f o r  r <<to, 

where a is a numerical  constant, N is the  dissipation rate of temperature  fluctua- 

tions  due  to  molecular  diffusion, E is the  corresponding  dissipation rate caused 

by fluid  viscosity,  and D is the  molecular  diffusion  coefficient. As before,  the 

"2/3 law" is seen  to hold for  separations  between  the  inner (to ) and  outer (Lo ) 

scales.  The  spatial  range defined by to and Lo is called  the  inertial  subrange 

and is considered  to  denote  the  limits  over which temperature (and, therefore, 

refractive index)  fluctuations  may  be  considered  isotropic.  Proportionality 

constants are usually  defined  over  the  inertial  subrange as follows: 

: t  

and 

where C: is called  the  temperature  structure  constant and Cn2 is called  the re- 

fractive  index  structure  constant.  The  notational  change  from D(F) to D( r )  results 

8 



from  the  assumption of isotropy. In general, at visible wavelengths  and  moderate 

average  temperatures, 

There are several  points worthy of discussion as regards  the Obukhov - 

Kolmogorov  turbulence  model.  First,  and  perhaps  most  important,  there is 

considerable  experimental  evidence  both  in  the Soviet Union33 9 34 and  the United 

S t a t e ~ , ~ ~ 9  36 that  the  model  closely agrees with observations  in  most  cases. 

Because of the  model  itself having a firm  basis in statistical  turbulence 

theory,  it would seem to  be  very  risky to use any significantly  different  model 

in propagation  calculations if agreement  between  theory and experiment is to  be 

expected. 

It must be  noted,  however,  that this model  says  little  about  the  form of Dn ( r )  

for r values  near  the  inner and outer  scales. In many problems,  the  exact be- 

havior of D,, (. r )  near r = Lo does not appear  to  be  very 38 How- 

ever, the form of Dn ( r )  near r = .eo may  be quite  significant3’  and could 

appreciably effect some  calculations.  Also,  the  mathematical  form of the 

Obukhov - Kolmogorov  model appreciably  complicates  calculations, and solutions 

are obtainable only through  computer-processed  numerical  integrations. 40 

In an attempt  to  avoid or  alleviate  certain of these  problems,  various  the- 

oreticiansl’ 41 have  employed a gaussian  model  for  the  covariance  function of 

the  index of refraction. For example, BeckmannC2 used  the following covariance 

9 



model: 

where p 2  is the  variance of refractive index  field; x , y , and z are the  rectangular 

components of r; and X, Y, and Z are the  correlation  distances  in  the  respective 

directions.  Clearly,  such a model eases the  mathematical  complexity  in  making 

calculations  and, in addition, has  the  decided  advantage of permitting  anisotropy 

in  the refractive index  field. However, the  model  has no basis  in  turbulence 

theory  and  has only one scale length per  direction. In this  sense,  the  gaussian 

model is far less acceptable  than  the Kolmogorov  model. 

". 

In conclusion,  it  seems  that if one desires to  make  meaningful  comparisons 

between  experiment  and  theory,  the  observations  must  be  compared with theo- 

retical  results  calculated  through "2/3 lawf1  turbulence  models. Any agreement 

of experiment with gaussian-based  theory  can  probably  be  regarded as fortuitous. 

In the  remainder of this  paper, we emphasize only those  results  from  propagation 

theory which are based on the Obukhov-Kolmogorov Turbulence  Theory. 

1.3 Theoretical Approaches  to  the Optical Propagation Problem 

Solutions  to  the  general  problem of propagation  through  random  media  have 

been  sought by many theoreticians  using  very  different  approaches. We make 

no attempt to review all  existent  techniques, but rather  restrict  ourselves to 

those which are most widely used.  Each will be review-ed from first principles 



and its  limitations  noted.  Specifically, we concern  ourselves with Geometrical 

Optics,  Born  Theory,  and Rytov Theory. 

A common  starting  point exists for each technique. We consider a non- 

conducting  medium  without sources which is characterized  by a position-dependent 

scalar permittivity, E = E (  x, y, z) , and a constant  scalar  permeability, ,u = po . 
Then Maxwell's equations  can be written  in MKS units as 

aE 
b. V x E  = - -  a t  ' 

with the  constitutive  relations 

Using the  vector  identity D x V x A = V(V - A) - V2 x and  taking  the curl of Eq.  8b, 

we obtain 

Assuming  harmonic  time-dependence ( e- j w  ) for  all field quantities,  and  putting 

8d into  the  right-hand  side of Eq. 9, we get 

v(v E) - ~2 E = j<,+(- jwEE) = m2 PEE . (1 0 )  

11 
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Using  the  identity V - ( V x )  VO - x + x - VV applied to Eq. 8a, we get 

V * E E  E V - E ~ E - V E .  
- - 

Thus, 

Substituting  into Eq. 10, we write 

The index of refraction n for a medium is defined  in terms of a phase  velocity 

ra t io   as  

where ! L ~ ,  c o  , and c a r e  the free  space  values  and we assume ,u = , u0  . Setting 

the  permeability  equal  to unity and introducing  the  free  space  wave  number 

J 

we can  write Eq. 12  as 
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This is the  general  equation  which  must be solved  for  propagation in a medium 

characterized by a random-point  function for  the  refractive index.  Eq. 13 is a 

vector  equation  and  hence is really  three  scalar equations.  Consider the x com- 

ponent  and  expand  the  right-hand side. Then, 

Clearly  the  term V(E V In n )  in Eq. 13 couples  the  various  components of the 

field  together  and is responsible  for  polarization  fluctuations.  Usually  this  term 

is dropped, and polarization  fluctuations are considered  negligible  on  the  basis 

of the  following  argument.43  Since  the  deviations of n from its mean  value are 

very small(tYPicallY3 d ( n )  - 1, then  one  can  assume  that  the  deviation of E 

from  the  value Eo it would assume  in a turbulence-free  region is also  small. 

In this case, a perturbation-type  solution can be sought for E ,  i.e. , 

with 

n = (n) + n1 

sukstituting Eq. 15 into Eq. 13, expanding,  simplifying,  and  dropping all terms 

greater than first order,  we find that 



Comparing  the  third  and  fourth  terms  in Eq. 16, we find that the  third divided 

by  the  fourth is approximately  equal  to do). Since  the  assumption to >> A ap- 

pears  reasonable  for all optical  problems,  the  fourth  term in Eq. 16 can be 

dropped.  Since  this  term  was  generated  by  the  right-hand  side of Eq. 13, then 

V(E V In n )  in Eq. 13 can  be  neglected. We conclude that the  equation  to  be 

solved is 

The  solution of this  equation  using  the three previously  listed  techniques is the 

subject of the following sections. 

a. Geometrical  Optics. We first  note that  Eq. 1 7  is equivalent  to  three 

identical  scalar  equations, and so we need only deal with 

where E is any of the  rectangular  components of E.  Eq. 18 can be rewritten in 

the  form7 

where  the  various  forms are easily equated by direct expansion.  Let 

14 



Separate  the  above  equation  into real and  imaginary  parts  and  equate  both  to 

zero.  For  the real part, 

V2 I n  A f 1V 1nAl - lvSl f k2 n2 = 0 . 

For  the  imaginary  part, 

U 2 S  f 2 V l n A -  VS = 0 .  

Noting the  relationships  used  above, we can  write 

but,  since  the wave amplitude  can  be  expected  to  change in space no faster than 

1/X0, then 

Therefore,  Eq. 20 becomes 

which is the  Eiconal  equation.  Eqs.  19andEq. 21 are the  basis  for the  geo- 

metrical  optics  approach.  The  primary  limitation of the  approach is that  ampli- 

tude changes  near  boundaries are not  properly  treated.44  The  neglect of the 

V 2  A/A term is tantamount  to  ignoring  diffraction  effects.  The  amplitude  fluctua- 

tions which are predicted by geometrical  optics for the  turbulent  wave  propagation 

15 



problem are not in  any  sense  due  to  diffraction  effects but rather are caused by 

the  lens  effect of inhomogeneities  along  the  path.  That is, as one  moves  along 

the  propagation  path,  the  phase  field has some  curvature  associated with it at 

eve* point. The  integral of this curvature  along  the  path  results in a focusing 

or  de-focusing of the  on-axis  ray  bundle,  and  hence the on-axis  energy  density 

either  increases or decreases.  The  predictions for phase fluctuations  obtained 

through  geometrical  optics  are  in  general  considered  to  have a  wider  range of 

validity  than  those  for  amplitude  statistic^.^^ This  aspect will be  considered in 

more  detail  in  later  sections. 

b. Born  Theory. As before, we begin with the  scalar  version of Eq. 17, i. e . ,  

V2 E -t k 2 n 2 E  = 0 . 

Since  the  refractive index deviations are  assumed  small  (compared  to  the  mean 

value), a perturbation-type  solution of the  form 

E = E, + E, 

is sought,  where E, is the  field  that would exist in the  absence of turbulence. 

We let n(T)  = 1 + n ,  ( T )  and  note that v2 E, + k 2  E, = 0. Eq. 18 can now be writ- 

ten as 

v2 E, + 2k2 n1 E, + k 2  ",*EO + k 2  E, + 2n, k 2  E, + k 2  n I 2 E l  : 0 .  

Since n1 << 1 and E, is of the  order n,  IE,l, we can  neglect  higher-order  terms 

with small   error and write 

V 2  E, + k 2  E, = - 2k2 n, E, . 
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This  equation  has  the  solution 

where G ( I  i - i ' I ) is the free space  Green's function  defined as 

and  the  integral  is  over  the  scattering  volume V. Eq. 22 i s  the  basic  result of 

single-scatter  Born  theory.  Its  usefulness is seriously  compromised by the 

restriction  that 1 E, l/i E,, 1 << 1 .* In fact,  it is well known that  at  visible wave- 

lengths  this condition is violated  for  relatively  short  ranges  through  mild 

t ~ r b u l e n c e . ~ ~  

A multiple  scattering  approach  can  be  formulated from this  theory by a 

series expansions of E in the  form 

where IEi  I -nl I E i - l  I . Substitute Eq. 23 into Eq. 18 with n 1 + n l ,  expand, 

and  group terms of equal  order of smallness. Then we obtain  the  systems of 

For phase  calculations  using Born theory  it is required that k2 (.,*>XL << 1, where 4 i s  a 
characteristic  scale for the  turbulence and L i s  the path length. 
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equations 

( V 2 + k 2 ) E o  = 0 ,  

( V 2 + k 2 ) E 1  = - 2 k 2 n 1 E o ,  

( V 2  + k 2 )  E j  - 2k2  n1 E j - l  - k 2  n: E j - 2 ,  for  j 1 2 . 

This  set of equations  has  the  solution 

E i  (i) = 1" {k2 n: + 2k2  n1  
E i U 1  (F' ) 

Ei- ( T '  ) 
Ei-2  ( T I )  C ( l T -  T '  

We now have a set of integral  equations  to  solve,  starting with i = 1. Clearly, 

the  range of validity of the  technique  has  been  extended,  but  the  mathematical 

complexity is increased so much  that  the  possibility of making  meaningful  calcu- 

lations is doubtful. The  accuracy of the  technique  versus  the  number of terms  in 

the series does not seem to  be well established  at  this  time. 

c. Rytov Theory.  This  approach  has  been  given wide exposure  through  the 

work of Chernov  and Tatarski and  continues  to  be  the  subject of much  discussion, 

The  derivation  starts with the  transformed  version of Eq. 18, i.e. , 

Let 

and 
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and  define  the  complex  phase II, as 

E(T) = exp [+(T)] = exp [In A(T) + i s(T)] . 

Therefore, 

We set 

4 = 

Therefore, 

E = exp [ { lo  + d l l ]  = E, exp [ l , ! ~ , ]  , 

where E, is the  unscattered wave which satisfies 

v2 E, + k 2 E ,  = 0, 

or  
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This last equation  can be written as 

Substituting  the first of Eqs. 28 into  Eq. 27 and  subtracting  Eq. 29 from  the  result, 

we obtain 

V2y!J1 + ) V $ 1 1 2  + 2Vy!J0 Vy!Jl + k2 (2nl  +n:) 0 ,  

which is the  nonlinear Rcatti equation.  Since n1 << 1, k2 n: is much less than 

2k2 n1 and  can  be  dropped.  Similarly,  since 1 VG1 1 << 1 V$o I - k, then 1 Vy!J1 1 

<< 2V$J0 * V$Jl and we also  neglect  the I V$l 1 term.  Therefore,  Eq. 30 can be 

written 

Eq. 31 is the  linearized  form of Eq. 30 and is the  fundamental  equation of Rytov 

theory.  The  dropping of the  term I V$l I in Eq. 30 is called  the ffRytOv 

Approximation." We now define W in terms of complex  phase  quantities as 

Substituting  for $l in Eq. 31 using Eq. 32  and after expanding  and  simplifying, we 

have 

c2 W + k2 W = - 2k2 n1 E , ,  (33) 
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which has the  solution 

and  therefore, 

It is noteworthy  that  exactly  the  same  calculation is needed  to  obtain W ( 7 )  as 

was  needed to find the first   term in the Born series. It is tempting  to  conjecture 

that the  realms of validity are therefore  equal. However, this reasoning  can  be 

quickly dismissed when one realizes that the  nature of the  correction  term  in 

each  case is quite  different. In Born  theory,  the  correction  term is summed with 

the  unscattered  field  to  get  the  total  field,  while in Rytov theory  the  correction  to 

complex  phase (i.e. $ 1 )  appears  in  the  total  field  in a multiplicative  fashion. 

Clearly,  the  range of validity of the two approaches  need not be  the  same. 

The  derivation of Rytov theory  just  completed  contains only  one  noteworthy 

assumption,  namely that I V+l 1 << I V+o I - k . This is equivalent  to  saying  that 

the  change  in  the  correction  to  complex  phase  over  distances of a wavelength is 

much less than 271 radians. If  we recall that A < < . e O  , this condition would seem 

very  tolerable and we would conclude  that Rytov theory  has  an  extremely  large 

range of validity.  Actually, this  does not seem to be  the case. Present thinking 

on the  relative  merits of the three preceding  approaches is discussed in the 

following section. 
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1.4 Comparison of Theoretical Approaches: Relative Range of Validity 

Considering  geometrical  optics  first, we  noted earlier that this approach 

neglected  diffraction effects. In addition, refractive effects on  off-axis ray 

bundles  will  result  in  caustics  and  cause a "spill  over" of energy  into  the  on-axis 

ray bundle.  This  mechanism is also  neglected.  The  usual  sufficiency  condition 

applied  for a geometrical  optics  approach  to be  valid is that  the  path  lengthL  be 

much less than x:/X. For typical  near-ground  propagation, this results in an L 

value of a few meters.  Taylor 47 ' 48 has  questioned  the  validity of this  criterion 

(i.e.,L << x?/'X ) and raises the  possibility  that  the  ray  optics  technique  may  be 

valid  out  to  several  hundred  meters. A complicating  factor  in  the  discussion is 

that  one  must  define  the  statistic of interest  before  assigning a range of validity 

to a technique.49 It is clear  that  phase  fluctuations are handled  in a more  adequate 

fashion  than  amplitude  fluctuations by ray optics.  This  follows  since  the  answer 

one gets  for  the  phase  structure function  through ray  optics is the  same as the 

answer obtained  through  wave  optics. 50 

Perhaps  the  most  straightforward  experimental method for finding the 

geometrical  optic  limit for amplitude  analysis would be  to  transmit two widely 

spaced (e.g., M 1 micrometer)  optical  beams  over a variable-length path.  Since 

geometrical  optics is the  high-frequency  approximation to  the  propagation 

phenomena, it has no  wave-number  dependence  in  the  calculation of amplitude 

fluctuations;  the  appearance of a statistical  difference in the  amplitude  fluctua- 

tions of the two beams could be  interpreted as the break-down  point of the ray 

optic  amplitude  calculation.  This  type of experiment  has not to  the  author's 
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knowledge been  carried  out, and we are without  any definitive  experimental  in- 

vestigation of the  problem. However, it can be noted  on  the  basis of the  results 

presented in Section 2.2 of this report that over a near-ground  horizontal  path 

under weak turbulence  conditions (i. e. , at night) the  valid  range  for  amplitude 

calculations is much less than 1.17 KM. The  problem is not as perplexing as it 

might  seem,  since  the  geometrical  optics  approach  can be shown to  be a special 

case of the  more  general wave treatment; 51y 52 therefore, any needed result 

can  be  obtained  using wave optics  (assuming  the  mathematics are tractable). 

Single-scatter  Born  theory is seriously  hampered by the  restriction 

I E,/E, 1 << 1. To gain  some  insight  into  the  magnitude of the  problem, we consider 

pro the roe'^^^ measurements of stellar irradiance  fluctuations  as a function of 

zenith  angle. Under the  weakest  scintillation  conditions, (i. e. the s ta r  is at  

zenith and chromatic  averaging is allowed),  the  normalized  irradiance  fluctuation 

(standard  deviation  divided by mean) is about 36%. So clearly,  even  this  rather 

mildly  turbulent  path is beyond the  scope of single-scatter  Born  theory.  Typical 

near-ground paths exceeding a few hundred  meters in  length  induce  visible  ampli- 

tude  fluctuations which are larger than stellar scintillation  and are also not 

amenable  to  this  technique.  It is  possible,  however,  that  for  infrared  sources 

the  magnitude of the wave fluctuations  in many cases may be  sufficiently  small so 

that  single-scatter  theory is applicable  for  these  ranges. 

Rytov theory  contains only one  notable  assumption;  namely,  that  the  correc- 

tion term  to  the  complex  phase  changes  little  over  distances of a wavelength. As 

noted earlier, this is not a significant  restriction for most  problems;  therefore, 

one is tempted  to  conclude  that  the  range of validity is great.  However,  the method 
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has  been  questioned  both  in the Soviet ~ n i o n ~ ~ - ~ ~  (as reported by Strohbehn)  and 

in the United States. 57 argued that the  method  included  geometrical 

optics  and  single-scatter Born theory  and had a range of validity  much greater 

than  either.  viewed  the  technique as a perturbation  solution  to  the non- 

linear Ricatti equation;  after  calculating  the  next  higher  term in the  solution, 

he concluded that the Rytov technique  was  valid only in  situations  where  the 

single-scatter  theory could be  applied. Fried5g interpreted  Coulman's data6' as 

experimental  proof that the Rytov approximation  gave  accurate  answers  in  situa- 

tions which  could  not be  handled  by  single-scatter o r  ray optic  theory.  Various 

other  papers  have  appeared  either  defending o r   c r i t i c i ~ i n g ~ ~  the  usefulness 

of the  approach. 

61-63 

Perhaps  the  most meaningful  conclusion  that can be drawn in this situation 

is that  the  problem is not  likely  to  be  clearly and  decisively  resolved  through 

analytical efforts.  Properly  designed  experiments  should  be able to settle the 

issue  and in fact, to this writer, it appears that certain  aspects of the  problem 

are now resolvable. In view of the  data  presented  in  this  report as well as other 

recent  experimental results?6 it seems clear that Rytov theory  accurately pre- 

dicts  amplitude statistics in cases where  neither  geometrical  optics  nor single- 

scatter theory is applicable.  The  remaining  task is to  determine  the  parameter 

ranges  over which reliable answers  for  amplitude statistics can  be  expected. 

Specifically,  the  level at which the  variance of log  amplitude  saturates is usually 

regarded as the  upper  limit  for  useful  amplitude  calculations.  The  available 

experimental  data on this subject are contradictory.  Section 2 . 3  includes a discus- 

sion of these  data  and  presents new data which  may help  to  clarify  the  problem. 
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Little  can  be  said  about  phase  statistics,  since  experimental  data is so 

sparse. We note,  however,  that  second-order  statistics  such as the  phase  structure 

function are not appreciably  different  for  the  geometrical  optics  and  the wave optics 

approach. In any  case, it is thought that  solutions  for  phase statistics using 

Rytov's  method  will be valid for  wider  ranges  than  those for amplitude statistics. 45 

There are a number of well-known theoretical  approaches which  have been 

neglected  for  various  reasons. Hufnagel  and Stanley's57 Mutual Coherence  Func- 

tion  approach  gives  results which are in exact agreement with Tatarski ; in 

fact,  their  results may  be  considered a specialization of Tatarski's  more  general 

results. The  renormalization  technique  advocated by d e W 0 l f ~ ~ p 6 ~ 9 ~ 6  has the  in- 

teresting  facet that it predicts a saturation of irradiance  fluctuations. In addition, 

the  amplitude  fluctuations are said  to follow a Rayleigh o r  Rice  distribution  in 

place of the  usually  assumed  log-normal  behavior. However, the  approach with 

its  various  approximations has not  yet  been  subjected  to a thorough critical re- 

view. In addition,  the  predicted  saturation  level is appreciably less than  some 

of the  measured  values. 

2 

In summary,  it  appears  that Rytov theory,  although it has  certain  limits 

which at this  time are not well  defined, is the most  fruitful  approach  available 

to  the  propagation  problem.  Subsequent  sections of this report will emphasize 

results obtained from Rytov theory. 

1.5 Theoretical  Results 

This section is a summary of theoretical  results which have  been  evaluated 

for  various  types of optical  propagation  problem. We restrict  ourselves to 
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those  results which have  developed  based on the  Kolmogorov  Theory of Turbulence. 

Therefore, we feel that  the  validity of contemporary  optical  propagation  theory 

can  be  rigorously  tested by comparing  these  results to the  outcomes of properly 

designed  experiments. 

The  notational  differences  between  authors is considerable, and we have at- 

tempted  to  standardize. This occasionally  causes  the  constants  in  various  equa- 

tions  to differ slightly  from  the  original  published  values.  The  classification of 

results is according  to  type of source (infinite  plane wave, spherical wave, finite 

gaussian  beam)  and  propagation  path (homogeneous turbulence, non-homogeneous 

turbulence). Non-homogeneous means  simply that C,' is a slowly  varying func- 

tion of position  along  the path.  The assumed  spatial  dependence will be  given for 

each  case.  For  each  group of results,  the  listed  order  agrees  chronologically 

with appearance in the published literature.  The  classification of results is as 

follows : 

(1) Infinite  plane  wave?  homogeneous  turbulence. 

(2) Spherical  wave,  homogeneous  turbulence. 

(3) Finite  gaussian  beam, homogeneous turbulence. 

(4) Infinite  plane  wave,  non-homogeneous  turbulence. 

(5) Spherical  wave, non-homogeneous turbulence. 

(6) Finite  gaussian  beam, non-homogeneous turbulence. 
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LIST O F  NOTATIONS 

1 Common notation: 

Log amplitude x(%) = 1/2 In [u(X)/u, (X)] , 

where u(X) is the  field at TI and u o  (51) is the RMS field 

value at the  same point. 

Optical carrier  phase: +(X) . 
Refractive  index  structure  constant as defined  through 

the Kolmogorov "2/3 law": C: . 
Lo and .eo : outer  and  inner scales of turbulence 

which define  the  limits of the Kolmogorov spectrum. 

Wave number of the  radiation: k = 2rr/'h . 

Length of propagation  path: L . 

Inner  scale  parameter: km = (5. 48/t0 ) . 
Infinite  plane  wave: 

Log amplitude  covariance: 

where 7 and /j are position  vectors  perpendicular  to  the 

propagation  path,  and  the  assumptions of homogeneity 

and isotropy for 8 have  been  made by writing C x  (7) 

c.e ( P ) .  

Log-amplitude  variance: Cx (0)  = ([.e( 7 )  - (X(T))] ') - 
Log-amplitude structure function: Dt ( P )  = ([$Cy) - t ( 7  + i ~ ) ]  2, 

= 2[c4 (0) - cx ( , a ) ]  - 
Phase  structure function: D+ (,a) = ([$( F) - (P(+ + P ) ]  2, - 
Mutual coherence  function: M( ,@) ( ~ ( 7 )  U *  (i + F)) . 

! 
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Spherical  wave : 

Log-amplitude  covariance: C T  ( p )  . 
Log-amplitude  variance: C{ (0)  - 
Phase  structure function: D$ ( p )  . 
Finite gaussian  beam: 

Standard  deviation of amplitude  profile: a. , 

i .   e .  , beam amplitude  profile is proportional to 

exp [-  ~ ~ / ’ 2 a 0 2 ]  . 
On-axis  log  amplitude  variance: C k  (0 ,  0) . 
Log-amplitude  variance as measured a distance R off the 

propagation axis: c t  ( 0, R) . 
Mean value of log amplitude: (4.). 

Phase  structure function: D: ( s ,  S) , 

where s and S specify  the  position of the two measure- 

ment  points  with respect  to  the  propagation axis. 

Theoretical  Results 

a.  Infinite  Plane Wave,  Homogeneous  Turbulence. For fi << 4 ,  (i. e . ,  

geometrical  optics) , 

Cx (0)  = 2.46 C,’ L3 , 
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and 

k 
CX ( p )  = %'(0.033)C: k2 L sin (41) 

and 
for p >> to, 

DX ( p )  = 1.72C: k 2  L40"*'3 p2 , for ,LJ < < X o  . (42) 

Also, for P >> x. and for  P - > a ,  
D4 ( p )  = 2 . 9 1  k 2  LC: p 5 ' 3 ,  

and for :I < a , 
(43) 

(44) 

D, ( p )  = l.72C:t,,-1.'3 k 2 L p 2  . (45 ) 

The  above results,  Eqs.  36-45, are due to Tatarski. The integrals  in Eqs .  37 

and 41  have  been  evaluated  numerically by him and are shown in his Figs. 8 

and 13. 

2 

The following results (Eqs. 46-48) are due  to  Fried.67 
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C4 ( 0 )  0.309 k7I6 L11’6 C n ’  

and 

The first ten  values of an,  bn used  in Eqs. 46 and 48 are listed  in  Table I and 

the  results of Eqs. 46 and 48 are plotted  in Fried’s Figs. 1 and 3.67 

TABLE I 

Coefficients for Eqs. 46 and 48 

n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1.00000 

-7.63889 X 10-1 

1.23778 x 

-2.83086 x 

1.08825 x 

-5.34385 x 

3.03065 x 

-1.89046 x 

1.26184 x loM4 

-8.86012 x 

6.84209 

5.27939 x 

-4.00354 X 

8.98375 x 10  - 4  

-3.09202 X 10 - 4  

1.34605 x 10 - 4  

-6.80418 X 10 -’ 
3.81508 x 10 - 5  

-2.30845 X 10 -’ 
1.48081 x 10 - 5  
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The  mutual  coherence  function  for  an  infinite  plane  wave as measured on 

a plane  perpendicular  to  the  direction of propagation  was  evaluated by Hufnagel 

and  Stanleyb7 as 

where  the  integration is over  the  propagation path. Therefore,  for homogeneous 

turbulence, 

M ( p )  = exp [- 3 ( 2 . 9 1  k 2  35,'3 c: L )] 1 

b.  Spherical Wave,  Homogeneous Turbulence.  From  Tatarski,' for K L  << .eo, 

From  Fried,68 for > > x o ,  we have 

2 5 ' 6  

- 6 . 9 8 4 4 2  [SI 9 (53) 



and 

1 
- 1 f 6.98442 

The first ten values of an, bn, and cn are listed in Table II; the  evaluation of 

the  right-hand  sides  of  Eqs. 53 and 55 is shown in Fried's  Figs. 1 and 2. 68 

TABLE I1 

Coefficients for Eqs. 53 and 55 

n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

an 

1.00000 

-2.59722 

4.01006 

-5.32819 

6.58359 

-7.79261 

8.96511 

-10.1076 

11.2249 

-12.3202 

bn 

6.84218 

-4.12854 

3.49205 

-3.17894 

2.98285 

-2.84418 

2.73873 

-2.65456 

2.58505 

-2.52616 

cn 

2.53100 

-0.389951 

0.150525 

-0.0790161 

0.0485236 

-0.0327814 

0.0236145 

-0.0178143 

0.0139142 

-0.0111669 
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C. Finite Gaussian  Beam, Homogeneous Turbulence.  From Kon and 

T a t a r ~ k i ~ ~  we have, for  a collimated  beam with K L  <C .eo, 

D+ ( s ,  S) = 1.64C:$i1 '3Lk2 s 2  s2 ka L2 02 ":)I , (56) 

where 

- 
p1 and F 2  are the  position  vectors of the  observation  points with respect  to 

the  beam axis. ,F, is the  confluent  hypergeometric  function,  and the assumptions 

K L  << to and  near-field  operation  have  been  incorporated. In addition, Eq. 56 

has been  written  for  the case where  the  observation  points lie on a straight  line 

passing  through  the  beam axis. 

For  the wave optics case ( f i  >> xo) with L2 K:/k2 a: >> 1, 

[2 ,F, ( 1 1 6 ,  1 ,  s 2 / a t )  - ,F, ( 1 / 6 ,  2 ,  s 2 ; ' a ; ) ]  - (57) 

From  Fried70 we have  the following results  for amplitude statistics. For 

collimated  beam  propagation, 

C,&(O, O)/C$ (0) = .r(Y), 
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where f- is evaluated  for  argument  values  ranging  from 0.005 to 128.0 in  Table III. 

( ka :/"L ) 

0.005 

0.01 

0.02 

0,03 

0.04 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.40 

0.50 

TABLE III 

Coefficients  for Eq. 58 

f.(ka:/L) 

0.9548 

0.9268 

0.8844 

0.8510 

0.8232 

0.7991 

0.7129 

0.6593 

0.6243 

0.6019 

0.5890 

0.5834 

0.5971 

For focused  beam  propagation , 

(ka;/L) 

0.60 

0.70 

0.80 

0.90 

1.0 

2.0 

4.0 

8.0 

16.0 

32.0 

64.0 

128.0 

f (kat/'L) 
~ 

0.6237 

0.6590 

0.7000 

0.7442 

0.7901 

1.1947 

1.6120 

1.9239 

2.1356 

2.2712 

2.3708 

2.3774 

where  the  function g is shown for  discrete  argument  values in Table N. 
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TABLE N 

Coefficients  for Eq. 59 

k a   t / L  

0.005 

0.01 

0.02 

0.03 

0.04 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.40 

0.50 

-i%( k+L) 

0.9547 

0.9266 

0.8837 

0.8496 

0.8208 

0.7955 

0.7001 

0.6329 

0.5811 

0.5390 

0.5039 

0.4476 

0.4041 

ka t / L  

0.60 

0.70 

0.80 

0.90 

1.0 

2.0 

4.0 

8.0 

16 .O 

32.0 

64.0 

128.0 

0.3691 

0.3402 

0.3157 

0.2948 

0.2766 

0.1723 

0.09827 

0.05212 

0.02606 

0.01234 

0.005583 

0.002304 

We emphasize  that Eqs. 58 and  59 hold only for  measurement  points on or near 

the axis of propagation.  The results (Eqs. 58 and  59) are plotted in Fried's 

Fig. l.70 

Results for the  behavior of the log-amplitude  variance  off-axis are available 

from Ho?' These  results are restricted  to  measurement  points which lie in 

the  near  field of the  transmitter  aperture as well as to  collimated  beams. 

For 6 L  << $o , 

C t ( 0 ,  R) = C $ ( O )  



and 

C,,y ( 0 )  = 0.0552r( 1/6) C: k7'6 LlV6,  (64) 

For  clarity, we restate that R is the  measurement  point's  off-axis  radial  distance 

and C4 ( 0 )  is the  log-amplitude  variance for an  infinite  plane  wave  traversing 

the  same path. Hots results are plotted in his Figs. 1 and 2.71 

More  general  results are available  from  I~himaru.~'  These  results  are 

valid for collimated  beams  and a vanishingly small  inner  scale.  The  most  useful 

results of this work  take  the  form 

5/6 

ck (0, R) n 2  ( 0 . 0 3 3  C:) r(-5/6) k7"6 L11/6 
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where 

2 ~ 1  is the  hypergeometric  function  and a = A/'% a: . On the  beam  axis,  the 

log-amplitude  variance is 

Eq. 68 is plotted as a function of aL in  Ishimaru's  Fig.  4, and it is shown there  that 

C k  (0 ,  0 )  increases  initially  at a rate between  the rates for  plane and spherical 

waves,  eventually crosses the  spherical-wave  value,  and  thereafter  grows  at 

a lesser rate. 

The  mean  value  for  log  amplitude  has  been  evaluated by Gebhardt  and  Collins73 

for the case where  the  detector is on or near  the  propagation  axis  and is in the 

near  field of the  transmitter.  The  analysis is based on prior work by S c h m e l t ~ e r ~ ~  

and is valid for focused and collimated-beam  propagation. 

For collimated-beam  propagation, it is seen  that 

where M was  evaluated at discrete  argument  values as shown in Table V. 
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TABLE V 

Coefficients  for Eq. 69 

ka l / L  

0.005 

0.01 

0.02 

0.03 

0.04 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.40 

0.50 

M(kao/L) 

-2.796590 

-2.730011 

-2.632161 

-2.558014 

-2.497791 

-2.447162 

-2.276834 

-2.180511 

-2.122361 

-2.087121 

-2.066645 

-2.052230 

-2.057157 

For focused-beam  propagation, 

<.e)/$ (0) 

kaO2/’L 

0.60 

0.70 

0.80 

0.90 

1.0 

2.0 

4.0 

8.0 

16.0 

32.0 

64.0 

128.0 

~ 

M (kao/L ) 

-2.071238 

-2.089343 

-2.108799 

-2.128209 

-2.146857 

-2.273239 

-2.365396 

-2.417845 

-2.445360 

-2.459626 

-2.468092 

-2.473000 

1 “Eg) . 

 his result is shown in  Table VI ,  and  both results (Eqs. 69 and 70) are plotted 

in Gebhardt and Collins’ Fig. 1.73 
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" ~ ~- 

ka   t /L  

0.005 

0.01 

0.02 

0.03 

0.04 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.40 

0.50 
~~ 

TABLE VI 

Coefficients for Eq. 70 

N (ku  t/'L) 

-2.796449 

-2.729521 

-2.630392 

-2.554293 

-2.491542 

-2.437886 

-2.246825 

-2.123765 

-2.035778 

-1.969364 

-1.917504 

-1.842334 

-1.791461 
. ". ~~ 

ka /L 

0.60 

0.70 

0.80 

0.90 

1.0 

2.0 

4.0 

8.0 

16 .O 

32.0 

64.0 

128.0 

N (ku:/L) 

-1.755759 

-1.730162 

-1.711608 

-1.698131 

-1.688406 

-1.677912 

-1.740934 

-1.838889 

-1.936671 

-2.015523 

-2.071282 

-2.107402 

d .  Infinite  Plane Wave, Non-Homogeneous Turbulence. From Tatarski, 75 

we have,  for  geometrical  optics (m << 4 , )  9 

and,  for wave optics ( K L  >> . e O ) ,  

C t  ( 0 )  = 0.56k7.j6 loLC: (x) x5I6 dx, 
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where  the  integration  variable  x is the distance from the  observation  point to the 

part  of the  path  being  considered.  Also, 

D+ ( p )  1.46 k2 i35r ’3  loL C: ( x )  dx . 

Two models for the  turbulence are used for calculations. For 

the wave optics  solutions  become 

CX ( 0 )  0 . 5 3  ~ , 2 ~  exp [- x,/xo] 

and 

D+ ( p )  = 2.91 k2 p5’3 C:o x. , 
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and, for 

they  become 

and 

C4 (0 )  = 3. 4C; k7’6 x 0 11/6 

D+ ( p )  4. 57 Cnzo k2 p 5 / 3  x0 , 

The  above results (Eqs. 71-75B) are  discussed in  the  context of the stellar 

“seeing”  problem  in  Chapter 8 of Tatarski.2  Fried76 has investigated  the  same 

problem  using  the  more  realistic  turbulence model 

C,’(h) 4 .2  x h-1”3 exp [- h/ho] , (76) 

where h is  the  altitude  measured from sea-level  and  h,  is  the  scale  height of 

the  atmosphere (3200 meters).  The  results are 

x 10- 7 716 
C$ ( 0 )  0.730 B , 
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and 
r- 

D+ ( . L J ) / C ~  ( 0 )  = 2 i 1 + 6 .  27602 (4h,k'::c H ) " ~  + 
n= 0 

where d is  the  zenith  angle of the  source and the  coefficients a n ,  bn, cn,and dn 

are  listed in Table VII. The results of Eqs. 78 and  79 a r e  plotted  in Fried's 

Figs. 2 and 4. 76 

TABLE VI1 

Coefficents  for Eqs .  78 and 79 - 
n 
- 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 
- 

a n  

1.00000 

-5,55556 X 10" 

3.74486 x 10-1 

-3.13723 X 10" 

2.79596 x 10" 

-2.56692 X l o - '  

2.39822 x 10" 

-2.26661 X 10" 

2.15952 x 10" 

-2.07068 X 10- '  

b n  

6.22008 

-1.79179 X 10- 

5.05797 x 10-2 

-2,24463 X 10- 

1.23097 x 10-  

-7.63945 x 

5,14252 x 10- 

-3.66677 x 

2.72914 x 1 0 -  

-2.09991 X 10-  

'n 

-7.85622 X 10-1 

2.28026 x 10- 

-4.36773 x 10-3  

1.45802 x 

-6.40001 x 

3.30962 x 

-1.90915 x 

1.19079 x 

-7.87611 x l o - '  

5.45286 x 10 - ' 

dn 

1.45145 x 10-1 

-1.73367 x 

1.67119 x 10-4 

-3.32886 x l o - '  

9.68214 x l o W 6  

-3.55757 x 10°C 

1.53244 x 

-7.40745 X 10 - 

3.90776 x 

-2.20795 X 10 - 
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e. Spherical ~- Wave, Non-Homogeneous - Turbulence.  From  Fried77 we have 

the following general  result: 

D+ ( P )  + Dd ( p )  = 2.91 k 2 p 5;’ JoL C: ( x )  (ET3 dx, 

where, in this  case, x is the  distance  from  the  source  to a point on the  propaga- 

tion  path  and L is the  total  path  length.  Also, from Fried78 we have 

where  the  turbulent  profile of Eq. 76 has been  used  and it is assumed  that  the 

measurement point is at a much greater  altitude than h, (3200 meters). 

f .  Finite  Gaussian  Beam, Non-Homogeneous Turbulence.  From  Fried, 78 

n =  0 

(6) - 5.90358 9 (82) 

where 
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and  the  coefficients are listed in Table VIII. Again, the  turbulence  model of Eq. 76 

has been  used  and  assumption of measurement  ranges much greater than h, has 

been  applied. Eq. 82 is plotted  in  Fried's Fig. l.78 

TABLE VIII 

Coefficients  for Eq. 82 
- 
n 
- 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 
- 

a" 

1.00000 

-5.55555 x 10-1 

3.74486 x 10- 

-3.13723 X 10-1 

2.79596 x 10" 

-2.56692 X l o - '  

2.39822 x 10-  

-2.26661 X 10-1 

2.15983 x 10" 

-2.07068 X 10-1 

bn 

6.22009 

-5.37538 x 10" 

2.52899 X 10" 

-1.57124 X l o - '  

1.10788 x 10- 

-8.40340 X 10-1 

6.68528 x 10- 

-5.50016 X 

4.63955 x 

-3.98984 x 10- 

cn 

-1.04436 

1.32617 x 10" 

-5.23919 X l o M 2  

2.84200 x 10- 

-1.79886 X 10- 

1.24807 x 10-  

-9.20387 x 

7.08917 x 

-5.64133 x 

4.60446 x 

d" 

4.82369 x 10- 

-4.53727 x 10- 

1.30301 x 

-5.51539 X 

2.85744 X 

-1.67697 x l o e 3  

1.07123 x 

-7.27633 X 10 - 4  

5.17810 x 

-3.82207 X 10 - 

The  preceding  equations  (Eqs. 36-82) are, to  the  author's knowledge, a 

complete  listing of numerically  useful  results now available  based on  Kolmogorov 

turbulence  theory. A t  the  time of this  writing,  it  appears  that  most  theoretical 

efforts are being  directed  toward  the  finite  gaussian  beam  propagation  problem. 

This  approach is particularly  interesting  since  it is compatible with experiments 

utilizing laser sources.  Also,  the  finite  beam  solutions  must  reduce  in  limiting 

cases to  the  spherical-wave  and  infinite-plane-wave  results.  The work of the 

Japanese  group of Kinoshita,  Asakura,  and Suzuki 79-81 has  been  particularly 
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noteworthy.  Using the Rytov approximation  and a gaussian  model  for  the  covariance 

function of the  refractive  index  field,  this  group has evaluated  various  second- 

order statistics for - 
(1) Log amplitude. 

(2) Phase. 

(3) Joint  log-amplitude-phase  fluctuations  throughout  the  beam. 

The  results  pertain  to homogeneous  turbulence  and  focused,  collimated, or 

uncollimated  propagation. We do  not list these  results,  however,  since  their 

accuracy is questionable owing to  the  gaussian  turbulence  model  employed. 
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I 

CHAPTER 2 

EXPERIMENTAL RESULTS 

2. I Experimental  Program 

a. Introductory  Remarks.  The  experimental  side of the  optical  propagation 

problem  has  been  investigated  in one form  or  another  for many years.  Historically, 

astronomers who have  studied  the  brightness  and  position  fluctuations of stellar 

images  must  be  regarded as the  first  experimentalists. However, these  workers 

often  failed  to  recognize  the  problem  in i ts   true statistical form;  their  meas- 

urements are difficult  to  interpret  and,  therefore,  equally  difficult  to  relate  to 

contemporary  theories.  The  pioneering  theoretical  treatise by Tatarski  also 

contained a substantial  amount of experimental  work,  but  these  results have been 

criticized  in  recent  years as regards  the  type of optical  source  and  the  data 

analysis  procedures  used. In general,  the  experimental  situation is very con- 

fusing; only a few published results are widely accepted by workers in the 

field. 

2 

It should  be clear that  optical  propagation  measurements are useful only if 

they are taken  in  such a manner as to permit  direct  comparisons with theory. 

Otherwise,  the  measurements  must  be  regarded as pertinent  only for the  time, 

location,  and  meteorological  conditions  under which  they were  taken. In principle, 

the  experimenter  should  have knowledge of the  statistical state of the  turbulence 
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along  the  entire  propagation path.  Then a wave of the  proper type  (e. g. , spherical, 

infinite  plane) is launched  into  the  medium,  and  the  received  fields are  measured 

and  statistically  analyzed at the  receiver.  Practical  limitations  dictate that the 

number of meteorological  stations  be  small,  and  one  therefore  usually  chooses 

paths  which are nearly  uniform  topologically.  The  measurements  at  a  single 

station or the  average of measurements  at a few stations are used  to  characterize 

the  turbulent state of the  atmosphere  along  the  entire path. 

There are two primary  reasons  for  seeking a theory  which  accurately pre- 

dicts  the effects of turbulence on optical  waves. In the first  case,  the  efficient 

implementation of optical  systems  for  informational  purposes  requires that  the 

designer  be  able  to  predict  accurately the optical  carrier  fluctuations induced by 

the known (or assumed)  turbulence.  Therefore,  for known turbulence  models, 

systems  can  be  optimized  to  reduce  the  effects of turbulence. In the  second  case, 

the  optical  fluctuations are  used  to  infer  the state of the  turbulence.  The  meas- 

ured  field  quantities  are  substituted into  the  theory,  and a unique  solution for the 

turbulence  which  caused  the  fluctuations is sought. Either  approach  requires  the 

existence of an  accurate  theoretical  treatment of the  propagation  problem. 

In the  work that follows, we emphasize  the first type of problem,  the  optical 

communication  problem.  The  experiments are designed  to  measure  those  param- 

eters  which  control  the  quality of a communication  channel. In all  cases,  the 

measurements  are  carried out in a manner  which  permits  direct  comparison with 

theory.  The  results  to  be  presented hold for near-ground  horizontal  paths. 

b. Test  Facilities. All  of the  experiments to be  described were performed 

on a test  range  operated by Goddard  Space  Flight  Center about 5 miles  east 
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of Greenbelt, Md. The  range is located in an  agricultural  research area and con- 

sists mostly of live-stock  graze-lands.  The  optical  path lies approximately  in 

an  east-west  geometry  and has winds  which are usually  out of the  northwest. 

At the  west  end of the  path, a permanent  structure  houses all transmitting, re- 

ceiving,  and  recording  equipment. Two large  mirrors   are  located  on  the  range 

and serve  to  reflect  transmitted  beams  back  to  the  transmitter  station.  The 

transmitter and receiver  systems are separated by about 1 meter,  so that  the 

optical  path  to  and  from  the  mirror has overlap only in a small  region  near  the 

"folding" mirror.  A profile of the  optical  path is shown in  Fig. 1. The  average 

beam  height  about  ground  level is 4.2 meters with a  standard  deviation of 

1.3 meters. 

The  transmitter-receiver building is a 20' by 20' structure  (Fig. 2) which 

is partitioned  into two 10' by 20' sections.  During  experiments, one of these 

sections is well enough  ventilated so that  conditions remain  near  ambient.  The 

other  section  contains  all  the  apparatus  requiring a stable  environment and 

is heated and air-conditioned.  The  transmitter and receiver  systems  are mounted 

on a  one-ton  granite  slab  (Fig. 3). This  table  has  three  supports, which a r e  iso- 

lated  from  the  building floor and res t  on the  eight-inch-deep concrete pad beneath 

the  building.  The granite  table  can  be  "floated" on pneumatic  supports  (com- 

pressed  nitrogen)  for  additional  vibration  isolation. In this condition,  the  system 

rejects input  excitations of frequency 1 Hz or greater. 

The first  folding mirror  is 50.8 cm  in  diameter  and is located at a range of 

583 meters. The mirror  is in a two-axis  adjustable  mount  (Fig. 4) and is attached 

to a one-ton concrete block.  The  second mirror (Fig. 5) is 30.5 cm  in  diameter 
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Figure 1. Profile of topography,  optical  propagation  range,  Goddard  Space  Flight  Center,  Greenbelt, Md. 



Figure 2. Transmitter-receiver station. The  build- 
ing i s  20' by 20' and sits on an8-inch-deepconcrete 
pad. Transmitted and received beams both go through 
the  open  window  shown above. 

! 

Figure 3. Stable transmitter-receiver platform. The 
compressed nitrogen tanks in the  background can be 
used to 'float" the table for additional vibration 
isolation. 
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and is also in an  adjustable  mount  and  located a t  a range of 200 meters. Both 

mir rors   a re  optical-quality  flats and are  protected by shelters when not  in  use. 

During  data runs, the signals of interest  were  recorded on magnetic  tape. 

The  recorder was an Ampex  FR-600,  which i s  a 7-channel  machine  having 

either  direct-  or  fm-recording  capability on each  track.  Binary  coded  decimal 

time  signals were also  recorded, so that  efficient  data  processing  could be imple- 

mented. In all  cases  the  recorder was run at 7-1/2 inches  per  second, which 

resulted in an  fm bandwidth of DC to 2.5 kHz. Figure 6 shows  the  tape  recorder 

and associated  signal  electronics. 

Figure 6. Magnetic  tape  recorder  and  supporting 
electronics.  This  system was located in the  heated/ 
air-conditioned  portion of the  building  and was con- 
nected by about 25 feet of cable  to  the  optical 
detectors. 
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Several  data-processing  techniques were used,  depending  on  the  statistic of 

interest. We discuss  here only the  digital  computer  approach and note that the 

other  techniques will be discussed as they  occur  in  the  sections  to follow. Two 

computers  were  used  during  the  course of the  program.  The first was a Raytheon 

520, which is a relatively  small  machine (8K memory).  This  machine had  input 

analog-to-digital converters, with sample  rates  variable up to lo4  per second. 

The  playback of the  tape  recorder  was  sampled by these  units lo3 times per 

second  and  stored  in  the  memory  in  correct  time  sequence. Data analysis  was 

initiated  manually by a switch  and  terminated when the  designated  number of 

samples had  been  stored.  The  program  analyzed  both  the  amplitude statistics 

of the signal (i.e., probabilitydensity,  cumulativedensity,  moments) and the  time 

statistics  (autocorrelation, power spectral  density).  After  this  procedure, each 

stored data point  was  normalized by the  mean  value of the  original  signal;  then 

the  natural  logarithm  was  taken  to  produce  the  variable  log  amplitude.  Identical 

amplitude  and  time  analysis  was  then  performed  for  log  amplitude. 

In order  to  process  longer  time  records it was  necessary  to  use a larger 

machine.  The IBM 360/91 was  therefore  programmed to  do the  same  analysis 

as outlined  above,  on  longer  data records. In this  case,  the  analog  data  tape had 

to  first  be  converted  into a digital data tape. The digitization  was  carried out at 

a 1-kHz rate and  with sufficient  bits per sample point so that quantization  noise 

was  insignificant  compared  to  other  noise  sources. 

During all experiments  the  average  meteorological  conditions  (temperature, 

pressure,  relative humidity, wind magnitude,  and  direction) were monitored at  

the  transceiver  station. In addition, a pair of  high-speed microthermal  probes 
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were  mounted  near  the  west end of the  path at a height of 4.15 meters in order 

to  make  direct  measurements of the  strength and spectrum of the  temperature 

fluctuations.  Figure 7 shows  the pair of thermal  sensors mounted on a wind- 

vane-type structure which was used  to  keep  the  sensor  elements  perpendicular 

to  the wind vector.  The  center  probe is a velocity  sensor  which was used for 

accurate wind speed  measurements.  The  thermal  sensor  elements were 2.0- 

micron-diameter  strands of platinum  with a length of 1.6 mm.  The system had 

a resolution of 0.01"C and a bandwidth of 1 kHz. The  processing  electronics for 

these  sensors is shown in  Fig. 8. 

1 
1 d 

Figure 7.  Micrometeorological  meas- 
urement  system.  The  center  probe 
measures wind speed,  while  the two 
outside  probes  monitor  microthermal 
fluctuations.  The  system was mounted 
4.2  meters  above  ground,  which was 
the  average  height of the  propagation 
path. 
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Figure 8. Processing  electronics  for 
micrometeorological  system.  The 
unit at the top of the  rack is the ve- 
locity  meter.  The  remainder of the sys- 
tem  processed  temperature  and  tem- 
perature-difference  fluctuations. 

We note  that this experimental  program  was  approximately a 2-year  effort 

starting  in Dec. 1967. Not all of the  instrumentation  described in this section 

was  available at all times  during  the  program. For example,  the  microthermal 

sensor  system did  not become  operational until near  the end of the  program. 

Also,  the  shorter  range  capability  provided  by  the  30.5-cm  mirror was  not avail- 

able at the  time of the  dual-wavelength  experiment  (Section  2.2). 
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2.2 Wavelength  Dependence of Laser Beam Scintillation* 

a. Introduction. It is shown in Appendix B that  the  variance of log amplitude 

calculated  through Rytov theory has a wavelength  dependence k(3/2 - , where 

p describes  the  spatial  behavior of the  refractive  index  fluctuations  through 

Using the Obukhov-Kolmogorov turbulence  model, we obtain 

p = 2/3 . 

Therefore the strength of optical  fluctuations (as denoted by the  log-ampli- 

tude  variance)  can  be  expected  to  vary as the 7/6 power of the wave number.  The 

experiment  described in this section  was  designed  to test this  theoretical 

prediction. 

b.  Experimental  Technique.  Because of the  short-term  stationarity  and 

lack of statistical homogeneity of the  atmosphere,  the  experimenter  must  trans- 

mit  simultaneously  through  the  same  portion of the  atmosphere  at  each wavelength 

of interest. The  experiment is shown schematically  in  Fig. 9. A He-Ne laser a t  

0.632 micron  and a CO, laser at  10.6 microns  were  aligned  parallel, with an 

offset of 12 cm, and were  operated  over a folded horizontal  1.17-km  path.  The 

He-Ne output was  unmodulated,  and no external  optics  were  used;  thus,  the 

assumptions of a spherical-wave  transmitter  were  satisfied.  The CO , output 

* A  substantial portion of the results of this  section was presented  to  the Spring 1968 meeting of 
~~~~ -~ "" ~ " 

the  Optical  Society of America  and  subsequently  publisheds2  in the Journal of the  Optical  Society 
of America. 
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Figure 9. Expariment  schematic  diagram,  dual-wavelength  experiment. 

was  modulated at a 1-kHz rate to  minimize  the  background  and  to  enhance  the 

detector  operation.  The  10.6-micron  beam  was  transmitted  through  a  13-mm- 

aperture  telescope which, because of the  longer  wavelength,  also  approximated 

a spherical-wave  source. A small  portion of the CO, beam  was  diverted  and  de- 

tected by n thermopile  to  monitor any fluctuations  in output power. 

A nlirror in  the  field  reflected  the two beams,  and  they were then  detected 

at the  transmitter station by a photomultiplier  and a gold-doped germanium  de- 

tector.  The output of the  photomultiplier  tube was recorded  directly on an FM 

tape  recorder.  The  10.6-micron  detected signal was demodulated by means of a 

standard  envelope  detection  scheme  and then recorded. 
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Table M lists the  important  parameters of the  experiment. In order  to 

avoid  the effects of aperture-averaging,  each  detector  aperture  was  made  to  ap- 

proximate a point  detector. In addition,  the  photomultiplier  tube  aperture was 

adjusted so as to  make  the  ratio of the  apertures  equal  to  the square root of the 

ratio of the  wavelengths.  This  ensured  that  aperture-averaging  effects  were 

insignificant. 

TABLE IX 

System  Parameters, Dual-Wavelength Experiment 
~ ~ 

Parameter 

Output power 

Beam  divergence 

Beam diameter 

Detector  aperture 

Detector  field of view 

Detection signal bandwidth 

Chopper frequency 

Range 

Average  beam  height 

Folding mirror  diameter 

Length of data run 
" - 

CO, 
-~ 

2 w  

0.4 m r  

13  mm 

2.5 cm 

2" 

220 Hz 

1 kHz 

1.2 km 

4m 

50.8 cm 

10 sec 

He-Ne 

1 mW 

0.7 m r  

1.4 mm 

0 . 6 2  cm 

5" 

2.5  kHz 

1.2 km 

4m 

50.8 cm 

10 sec 

The  recorded  scintillation  data  were  replayed  through an analog-to-digital 

converter  into a Raytheon 520 digital  computer  that  analyzed  the  statistics of the 

scintillation.  The  computer  was  programmed  to  analyze both irradiance and 
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log-amplitude  statistics.  Available  statistics  and  functional  relationships are 

given in  Table X. The  analog  scintillation signal was  sampled at a 1-kHz rate 

for 10 seconds, with each  sample  assigned  to one of 500 discrete  levels  available 

in  the  computer.  The  selection of the  time-record  length  for  a  single  data  run 

is a  tradeoff  between  the statistical  reliability of a measurement and  the statisti- 

cally  time-varying  atmosphere. 

TABLE X 

Computer  Analysis,  Dual-Wavelength  Experiment 

Irradiance  Statistics 

Average  value 

Variance 

Median 

3rd  central  moment 

4th central moment 

Probability  density function 

Power  spectral  density 

Autocorrelation  function 

Log-Amplitude Statistics 

Average  value 

Variance 

Median 

3rd  central  moment 

4th central  moment 

Probability  density  function 

Cumulative  distribution  function 

c.  Results.  Fig. 10 shows results of measurements  taken  over  a  2-hour 

nighttime  period  in  December.  Plotted  along  the  Y-axis is the  parameter 4 , de- 

fined as the ratio of log-amplitude  variances  at 0.632 and 10.6 microns. The 

X-axis is the  log-amplitude  variance  for  the He-Ne beam (u&, . 6 3 2 )  and  the 

refractive index structure  constant C,', which  in  this  case  was  determined from 
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Figure 10. Ratio of log-amplitude  variances  for He-Ne and CO, wavelengths. 

the  equations  for  horizontal  spherical-wave  propagation.  The  value 26.7 is the 

theoretical  ratio  obtained  from  the 7/6 power  predictions. 

The  data would seem  to  indicate  that  the  scintillation  statistics  depart  from 

the 7/6 power law in the  region  to  the left. The  difficulty here is that the  region  to 

the left corresponds  to  very low turbulence.  The CO, laser  output unfortunately 

had an  appreciable  amount of 120-Hz power supply ripple. In this region,  the 

dominant  noise on the  10.6-micron signal was caused not by the  atmosphere but 

by the 120-Hz ripple.  The output of the CO, unit was  recorded on tape; an 

evaluation of the  magnitude of the  ripple  showed that, in  the 0.04 region,  the 

61 



internal laser modulation  became the same  order of magnitude as the  atmosphere - 

induced modulation. Therefore,  the data points  in  the  region  below 0.07 are of 

questionable  value.  Some  compensation for the CO, internal  noise  can  be  ac- 

complished if one  makes  approximate  assumptions. 

The  intensity a t  the detector  aperture  can  be  considered  as  the  product of 

two random  variables, 

The first, I , ,  is the  irradiance  fluctuation  caused by internal  laser  ripple;  the 

second, h (  t ), is the  time-varying  atmospheric  transmission. If both variables 

are  assumed  log-normal with respective  variances .-: and 022, their  product is 

also  log-normal with a variance  equal  to u12 + a, 2 . '3 Several  experiments70984 

have  indicated  that h( t ) is log-normal  in  the  visible  spectrum,  and  inspection of 

cumulative  density of log  amplitude  for  the  transmitter  noise  (Fig. 11) has in- 

dicated  normality as a reasonable  approximation. 

The  data a r e  shown replotted  in Fig. 1 2  with the  transmitter  noise  subtracted 

from the CO, statistics;  the  measurements  obtained  during  low-scintillation con- 

ditions a r e  neglected.  The  average  value of the 39 independent data  points shown 

is 26.8, and  their  variance is 10.8. The  average  value of 4) is in  close  agreement 

with the  predicted  value of 26.7. 

The  statistical  reliability of the measurements  has  been  analyzed to de- 

termine  the  magnitude of data  scatter  to  be  expected  under  ideal conditions. 

Consider two target populations x and y where  the  random  variable x and y 

a r e  independent gaussian  random  variables. (Note that x and y represent the 
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Figure 11. C 0 2  transmitter  noise; log-amplitude 
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variable  log  amplitude a t  0.632 and 10.6 microns; the  assumption  that  they are 

independent is thus a very good approximation, as shown later in Fig. 32 .) Let 

and 

VAR(X) = w,2 

VAR(y) = c7 . Y 

Select a random  sample of size N from x and form the  sample  variance 

N 

s,2 = -7iy . 
i= 1 

Since  the x i  are normally  distributed,  then  the  random  variable 

(N - 1) S,' 
x2 = 

0: 

has  the  probability  density  function 

which is the  chi-square  density  with N - 1 degrees of freedom. So, in  this  case, 

x2 = 2 
XN-1 ' 
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Similarly,  one  can  repeat  the  experiment  with  the y population  and form  the 

sample  variance 

1 
M 

sy’ = ”l C(Yi - i q 2 ’  

j = 1  

where  the  random  sample is of size M. Note that the  quantities N and M refer to 

the  number of independent samples and  not the  total  number of samples. 

A s  before, (M - 1) S:/G-: is a  chi-square  random  variable with M - 1 degrees 

of freedom.  Therefore, 

We now consider  the  normalized  ratio of the  sample  variances, i.e., 

This quantity is a function of a random  variable and is therefore  itself a random 

variable. It is well that FN-I,M-l  has the  density 

So, in  order  to  construct a 90% confidence  interval  for  a  particular set of meas- 

urements, we write the  probability  statement 



IlImIIIllIIllIIllII 1 1  I1 

where B can be determined  directly  from tables, once N and M are known. In order 

to  find A ,  we use  the  relation 

Therefore, 

For the  sake of interest  consider  the following situation:  Assume  that a time 

record of length T has  been  analyzed  for  both  the x and y target populations  and 

that the  evaluated  ratio of the  respective  variances is 27, i. e. , 

In order  to  determine  the  degrees of freedom  for S: and S:, we inspect a typical 

autocorrelation  function  for  each  process  (Fig.  14)  and  use a linear  fit  to  the 

autocorrelation  functions as well as the  results of Appendix A ;  the  number of 

independent samples N and M is then  evaluated as 

and (93) 
N = aT * 28.6( 10) = 286,for Sy” 
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Therefore,  from  F-distribution  tables (with linear  interpolation)  we  get 

Therefore, 

_ _ _ ~  
*In a strict   sense,   the  equivalent  bandwidth  used  for  f inding N should  be  the  bandwidth of the  log- 

irradiance  signal  and  not  the  bandwidth of the  irradiance  f luctuations.   However,   the  data  reduction 
system  did  not  permit  an  evaluation of the   sprecaum of log  irradiance;  therefore,  the  equivalent 
bandwidth of the  irradiance  signal  was  used. It is e a s y  to show  that  the  bandwidth of the  irradi- 
ance   s igna l  is not  seriously  affected by the  logarithmic  operation  under  weak  scintillation  condi- 
t ions  (which is the  si tuation at 10.6 microns,  for m o s t  paths).  Consider a system  with  input 
x = vo = v(t)  and  output y = A log x, where 

- - 

vo = constant  (dc  level) ,  

v(t) = random t ime function  with  mean  value  equal to zero, 
and 

A = constant   (gain of the  log  amplifier). 

Power  spectral   density  (psd)  analysis of the  input x is performed  on  v(t)  only,  since  vo  merely 
resu l t s   in  a delta  function at the  origin  in  the  frequency  domain.  The  output of the  system is 

therefore, 

for  v(t) << vo  (i.e.,   weak  scintillation).  Thus,  psd  analysis of y is equivalent to psd  analysis  of 
A v(t)/v,;  this is the same as psd   ana lys i s  of the  input x, since  the  constant  factors A ,  vo  are 
removed  by  dividing  through by the  mean-square  value. 
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The  length of the confidence  interval for the  other data runs  can  be  expected  to 

be  about  the  same,  since T = 10 seconds  for  all cases. In addition, Beq. * 

is determined  chiefly by the component of wind velocity  perpendicular  to  the 

propagation  path,  and  this  did  not  change  significantly  during  the  experiment. 

So we conclude that the  observed  data  scatter is of the  same  order of magnitude 

as could be  expected  from  statistical  variation. 

The  normalized  power  spectral  density  for both wavelengths for a particular 

data run is shown  in Fig. 13. These  functions  were  evaluated by means of a 
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Figure 13. Dual-wavelength  normalized  power  spectral  density  (resolution band- 
width = 5 Hz; each  curve  normalized  to  the  same  area;  log-amplitude  variances 
for  these  data are C T ~  o ,  = 0.200 and ax o ,  = 0.00693). 2 2 
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Fourier  transformation of their  respective  autocorrelation functions. Both curves 

are normalized by their  intensity  variances.  Thus, if each  wavelength  has  equal 

amounts of scintillation, this plot would indicate  spectral  distribution of the 

scintillation.  The  normalization  scheme  used  requires  the  height of the CO, plot 

to  be  increased by a factor of 16. Therefore, it should be  clear that, at any fre- 

quency,  there is far more  scintillation  in  the  visible  spectrumthan  at  10  microns. 

The  resolution  bandwidth is 5 Hz, and  the wind velocity  perpendicular  to  the  propaga- 

tion  path is approximately  1.5  meters  per  second.  The  power supply ripple on 

the  10-micron  beam is obvious in  this plot. 

Fig.  14  presents  the  same  data  in  the  time  domain  in  terms of the  normalized 

autocorrelation  function Rx ( r ) / R x  ( 0 )  . Again, the  internal  modulation of the 

CO, laser appears as peaks  at 8- and  16-millisecond  intervals. If one fits  an 

exponential  function of the  form e-aT to  each of these  curves, the correlation 

time  constants (the alphas) have a ratio of 4.4, which is close  to  the  ratio of the 

square  roots of the wavelengths.  This is in agreement with propagation  theory, 

as can  be  seen  from  the following argument.  Tatarski  has shown that the  covariance 

of log  amplitude C4 ( P )  falls off to  zero  for  separations on the  order of 6. Also, 

it is shown analytically  in  this  report  and  experimentally by others2  that  the ir- 

radiance  covariance  function C, ( p )  has a similar  characteristic. So, C, ( p )  2 0 

at P = f i .  Assuming that the  relationship  between  the  spatial  dependence  and 

the  time  dependence of the  covariance  functions is predicted by the  concept of 

"frozen-in  turbulence,"  then p = Vn 7, where Vn is the  component of wind velocity 

perpendicular  to  the  propagation  path;  therefore, 

C, (7 )  2 0 a t  

69 



I l l  I 

1 

-.20 I 
0 10 20 30 40 50 60 70 80 90 

T (MILLISECONDS) 

Figure 14.  Normalized  autocorrelation  function  for dual-wavelength scintillation; 
fitting  the  data with the  exponential e- aT givesa (CO,) = 71.4, a(He-Ne) = 312. 

So, if we  inspect C, (7) for two different  wavelengths, we expect  the  ratio of 

the  correlation  times  to  be  proportional  to (A l/’A, )’ ”. 
A typical  portion of the  analog  scintillation  signal is shown in  Fig. 15. The 

computer  evaluated  the  variances as 0.200 and 0.00668, which gives a 4 value of 

30. The  chart  recorder had a 110-Hz, 3-db bandwidth,  which tends  to  smooth 

some of the  high-frequency He-Ne scintillation  (very little CO, scintillation is 

in the 110-Hz region),  The  important  parameter is the  ratio of the  maximum 

and  minimum  signal  excursions  from  the  average  value. For the He-Ne scintilla- 

tion,  excursions of several  octaves are common. In both of these  traces,  the 

background  levels  were not significantly  different  from  the  zero  level. 
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Figure 15. Typical  analog  scintillation  signal;  log-amplitude  variances are 
0.200 for He-Ne and 0.00668 for CO,. 

Fig. 16 is a typical  cumulative  probability  plot of log  amplitude at  10.6 

microns on Gaussian  probability  paper.  The  abscissa is F(4) , where 

and f ( u )  is the probability  density function for log amplitude;  the  ordinate is 

log  amplitude.  The  abscissa  scale is constructed so that  a normal  random 

variable would plot as a straight line. Thus it is clear  that  the  statistics of 

scintillation  at 10.6 microns  satisfy  this test for log-normality. 
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CUMULATIVE  PROBABILITY 

Figure 16. Cumulative  probability of log  amplitude at 10.6 microns; 
data  plotted on a Gaussian  abscissa scale. 

d. Conclusions. In summary,  the following conclusions  can  be  made: 

(1) The average  value  for  the  log-amplitude  variance  ratio  at 10.6 and 0.632 

microns is very  close  to  the  predicted  value of 26. 7. 

(2) The C O2 scintillation  has a bandwidth that is several  times  less than for 

the He-Ne and a correlation  time  that is approximately 4.4 times  greater 

than for the He-Ne. 

(3) The  probability  distribution of scintillation  at 10.6 microns  is  approxi- 

mately  linear when plotted on log-normal  probability  paper and thereby 

satisfies  this  test  for  log-normality. 
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2.3 Measurement of Log-Amplitude Variance and the Saturation Level of Irradiance 

Fluctuations* 

a. Measurement of Log-Amplitude Variance.  Theoretical  expressions  for 

the  variance of log  amplitude (ut ) have  been  derived  for  several  types of propa- 

gation path~.~,70,78 Numerous  experiments  have  been  devised  to  check  the 

theory  and  have  resulted  in  several  techniques  for  the  experimental  evaluation 

of 02. The first part  of this section is concerned  with  numerical  differences 

in u t  which we have  noted  in  our  work when two different  techniques  were  applied 

2 

to  the  same  raw  data. 

It has been  shown86 that  for  log-normal  scintillation,  irradiance  and log- 

amplitude  variances are related  through 

where D ;  = irradiance  variance.  Since  irradiance  fluctuations are easily  meas- 

u r e d ,   s e v e r a l   e x p e r i r n e n t e r ~ ~ g ~ ~  87 have used Eq. 95 to  evaluate D;. Another 

technique is to  simply  normalize a group of quantized  irradiance  samples (I1, 

I,, * - - I,) by I,  and form (x,, x2, - . . x"), where 

~ ~ ~ ~~~ ~ ~~ ~~~ ~ ~~~ 

* A  portion of the work reported in  this  section  was  published  in  the  Journal of the  Optical  Society 
~ ~~ 

of America." 
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A histogram (i. e .  , probability  density  function)  can  then  be  constructed  and  the 

moments of log  amplitude  computed. 

Both of these  techniques  were  used on scintillation  measurements with a 

He-Ne laser (0 .632 microns) oxrer a 1.17-km  horizontal  path.  The laser output 

was 1.4 mm between l/e2 points in the  irradiance  profile  and had a divergence 

of 0.7 1nr. At the  receiver,  the  fluctuating signal was detected by a photomulti- 

plier  through a 3-mm aperture.  The  results are shown in Fig. 17, where D: is 

the log-amplitude  variance  based on irradiance  measurements and Eq. 95, and 

0: is the  log-amplitude  variance  evaluated  from  the  moments of log  amplitude. 
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Figure  17.  Comparison of log-amplitude  variance: G-: calculated  from  irra- 
diance  moments [Eq. (95) J and DE' calculated  from  log-amplitude  moments. 
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Ideally,  either  technique  should  give  the same result and all points  should 

lie on the  unity-slope  straight line in Fig. 17. However, as the  scintillation be- 

comes  stronger,  the  difference (uE' - ":) becomes  significantly  greater.  There- 

fore,  the  discussion  must  center on which of the two techniques  for (.: - 

evaluation is more valid. 

Objections  to  the  use of moments  to evaluate .-E' are based  primarily on the 

dynamic  range  and  frequency  response  limitations of the  instrumentation. In 

this  experiment  the  average  photomultiplier  current  was  approximately a micro- 

ampere and  the  signal-to-noise  ratio  was  sufficiently high so  that  dynamic  range 

constraints were not excessive.*  Power  spectral  density analysis of the  data 

indicates  that  the  frequency  response of the  system (2.5 kHz) was  also not a 

problem. 

Since is based on the  Gaussian  behavior of log  amplitude  (through Eq. 95), 

it would seem  reasonable  to  try  to  correlate (u: - 0:) with deviations  from 

normality. Fig. 18 plots  percent  deviation  versus  skewness S, where S = m3/ 

( rn2 ) 3  " and rn is the i th  moment of log  amplitude  about  the  mean. For a sym- 

metrical  distribution  such as the  normal, S should  vanish.  Fig. 18 is shown with 

a least-square  linear  fit. 

The  data  indicates  that  for  scintillation with I SI > 1, the e r ror   in  calculating 

log-amplitude  variance  through Eq. 95 becomes  significant. If Fig. 17 is extrap- 

olated  to  stronger  turbulent  conditions, one gets a saturation-like  effect which 

is similar  to  that noted by Gracheva  and G ~ r v i c h , 8 ~  and  diet^.^^ This is 
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Figure 18. Percent  deviation of log-amplitude  variance  measurements 
vs  skewness of log  amplitude. 

particularly  interesting  since Eq. 95 was  used to evaluate  log-amplitude  variance 

in References 91 and 95. Fig.  19  presents  the  difference 02 - as a  function 

of the  third  central  moment. As pointed  out  by H ~ f n a g e l , ~ ~  02 - O: = 2m, + higher- 

order  terms. 

This  relationship  seems  to  be  in  fairly good agreement with the  data. It is 

noteworthy  that  cumulative  probability  plots of log  amplitude  for  various S values 

do not appear  significantly  different on Gaussian  probability  paper.  Fig. 20 pre- 

sents  results  for  typical data with S ranging  from  -0.143 to -0.694. 

Concluding this  section,  it  appears  that  the  validity of Eq. 95 is extremely 

sensitive  to  deviations  from  log  normality  and,  in  most  interesting  experiments, 

its accuracy is very  dubious. 
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Figure 19. Difference a: - u: as a function 
of third  central  moment, m3. 

b.  Saturation  Level of Irradiance  Fluctuations. In order to  give more  in- 

sight into  the implications of Fig. 17,  more  data  were  recorded  over  the  same 

range  during  strong  turbulence  conditions. An argon laser radiating at 4 8 8 0 i  

was  used.  The output beam  had a diameter of 1.2 mm  between l/e2 points  and 

a divergence of 0.7 mr. The received  energy  was  measured by a photomultiplier 

through a 1.5-mm  aperture. 

The  results are shown in Fig. 21 ,where  the  circled  points  represent  the 

argon  data  and  the  solid  points are the He-Ne measurements  already  presented 

in Fig. 17. It is clear that a: fails to  increase much beyond 0.3, regardless of 

how large u: becomes. A t  the time of this  writing,  there  have  been  five 
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Figure 20. Cumulative  probability of log  amplitude 

experimental  efforts known to  the  author  directed  toward  measuring  the satura- 

tion  level  for  irradiance  fluctuations  at  visible  wavelengths.  The  net  result  seems 

to  be  that  there is complete  agreement  that  saturation  occurs but very  little 

agreement as to  the  actual  level at which this happens. 

The work of Gracheva and Gurvicha4  in  the  Soviet Union produced  the first  

experimental  evidence of the  saturation of log-amplitude  variance.  The  saturation 

level  was  measured as approximately 0.58. However, as pointed  out by deWolf, 65 

there  was  an  error  in  the  data  reduction, and  the actual  measured  value was 0.14. 
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Figure 21. Comparison of log-amplitude variance:u: calculated  from  irradiance 
moments  [Eq. 951 and D: calculated  from  log-amplitude  moments.  The 
circled  data  points  represent  argon  data,  and  the  solid  points are He-Ne meas- 
urements. The  five levels shown are the  saturation  levels  measured  in  five  dif- 
ferent  experiments. 

Following this,  additional  data were published by Gracheva and  the saturation 

level  was  observed  to  be 0.25. In the United States,  Ochs  and  Lawrence pub- 

87 

91 

lished  data  indicating  saturation at about 0.6. Two data-processing  techniques 

were  used;  the  first  measured  the  slope of the  cumulative  density of log  ampli- 

tude; the second was  entirely  analog  and  used  logarithmic  amplifiers and RMS 
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voltmeters; the  techniques  gave  similar  results.  Unfortunately,  the  authors 

concluded  that their  data were in agreement with those of Gracheva  and  Gurvich. 

Apparently  they had not noted  deWolf's correction to these  data,  although  it had 

been  published  nine  months earlier.  Later,  using  photographic  techniques, Dietz 

measured  saturation at about 0.21. In this case, as well as in Ref. 84, the  var- 

iance of log-amplitude  was  computed by measuring  irradiance statistics and 

transforming  to  log  amplitude statistics using Eq.  95. The  remaining  experimental 

effort  was conducted by Fried46 who observed  saturation  for  both  visible  and  in- 

frared fluctuations,  and  in  addition  noted  that  the  saturation  level  was  wavelength- 

dependent.  The  analysis  technique  based on the  slope of the  cumulative  probabil- 

ity  function  was  used  here  and  resulted  in a saturation  level  in  the  visible of 0.55. 

Since  the  experimental  conditions  in  each of the  listed  instances were approxi- 

mately  the  same,  it  seems  likely  that only Fried  and  Lawrence  and  Ochs  have 

really  measured  saturation.  The  saturation  observed  in  the  other  experiments 

appears to  be either a "statistical  saturation"  (i.e.,the use of Eq. 95) o r  perhaps 

an  effect  due  to  dynamic range limitations.*  diet^^^ remarks that when his  data 

were analyzed with  the cumulative  probability  technique (which i s  less dependent 

on dynamic  range),  the  values  for  log-amplitude  variance  became  "somewhat 

89 

*In addition to the  published  experimental  efforts,  there is a widely-quoted  summarization of con- 
temporary  propagation work by S t r ~ h b e h n ~ ~  which  has  also  contributed to the  confusion.  The 
saturat ion  level  is discussed  and  the  factor of two  error  in  the  Gracheva/Gurvich  data is noted. 
T h e   d a t a  of Gracheva  are  presented;  through a success ion  of notation  errors,  missing  factors of 
two  and  interchanging of variances(X')with  standard  deviations(o12 = 4oX1 Strohbehn 
concludes  that   the  saturation  level is ap  roximately 0.8 (p. 1307). I t   appears  to this  writer  that 
the  calculation  should  be ax2 = (0.8/2) = 0.16. P 
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higher, If but  not  enough information is given so that  meaningful  comparisons can 

be made. 

In addition, there are some  fundamental  problems  associated with the use 

of pulsed  sources and  photographic  techniques  such as those  used in Ref. 89. Often 

the  output of such  sources is spatially  quite non-homogeneous, and, as a result, 

the  measured  spatial  probability  density  function of log  amplitude is the convolu- 

tion of two densities:  the  output  density  associated with the  source  and  the  density 

associated with the  atmospheric-induced  fluctuations. In fact,  the  source charac- 

teristics may mask  the  atmospheric-caused  fluctuation  for  ranges up to 200 

meters.89  Other obvious  problem areas include  compensating  for  the  nonlinear 

transfer  functions of the  film and overcoming  the  severe  dynamic-range  problem. 

Judged by the  noticeable  nonlinearity of the  cumulative  probability  plots of log 

amplitude  presented  in  Ref. 89, as well as in  other  reports by the  same 

group of experimenters, it does  not  appear that the  combination of pulsed  sources 

and  photographic  detection  techniques  permits  accurate  measurement of the 

density  function of irradiance  fluctuations. 

92  -94 

The difference .-E' - u: for  the high-turbulence  argon  data  presented  in  Fig. 

21 is superimposed on the  original He-Ne data  and  presented  in  Fig. 22 as a 

function of m3. The  data  appear  to be  in approximate  agreement with theory. 

We conclude that much of the data on the  saturation of the  variance of 

log  amplitude are suspect.*  The  level a t  which saturation  occurs  appears 

-~ "- - . ~ ~~ . .  . " - 

*The  absolute  accuracy of the very  high-turbulence  argon  data ( i . e .  uE2 > 0.3) presented  in  Figs. 
2 1  and 22  must be estimated  with  caution,  because of the  extended  instrumental  dynamic  range 
required for such  measurements ( s e e  Ap endix C ) .  However,  the  conclusions  presented are not 
affected  even if all  data  points  with oE4> 0.3  are  deleted. 
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to  be  considerably greater than the 0.2 value first  reported in the 

literature .84 9 87 
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Figure 2 2 .  Difference u: - 0: a s  a function of the  third  central  moment, m 3 .  

The  circled data points represent  argon  data, and the  solid  points a r e  He-Ne 
measurements. 
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2.4 Spatial and Spectral  Correlation of Irradiance  Fluctuations 

This section  presents  the results of an experimental  investigation of certain 

second-order  statistics of the  amplitude  field.  Specifically, we consider  the 

two-point statistic  (spatial  correlation) and the two-wavelength statistic  (spectral 

correlation).  Part (a) deals with spatial  correlation, and Par t  (b) deals with spectral 

correlation. 

a. Spatial  Correlation:  Theory. We consider an electromagnetic wave 

which propagates  through a medium  characterized by zero  conductivity, con- 

stant  permeability, and a permittivity which is a random-point  function. A 

degree of randomness is imposed on the  amplitude  and  phase of the wave by the 

stochastic  nature of the  medium.  The  log-amplitude  covariance for the wave as 

measured at points X and x, is 

where {(X) is the  log-amplitude  value  measured at x , and  the angle  brackets  de- 

note  an  ensemble  average  over all the  possible  realizations of the  permittivity 

field. When the  electromagnetic  field  quantities are assumed  to  be  locally 

homogeneous  and isotropic, Eq. 96 becomes 

where 

p = IX, -X*( 
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Tatarskig5 bas evaluated C t  ( F )  for infinite plane-wave  propagation  through 

homogeneous  isotropic  turbulence,  and  Friedg6 has solved  the  spherical-wave 

case for  similar  turbulence conditions.  Unfortunately, direct  experimental test- 

ing of these  results is difficult;  existing  optical  detectors are square-law  de- 

vices  and,  therefore,  have  outputs which are proportional to the  square of the  elec- 

tric field  rather  than  the  logarithm of the  field.  High-speed  logarithmic  processors 

with  sufficient  accuracy,  moreover, are difficult  to  obtain  and  have, up to  this  time, 

limited  the  accuracy with  which theoretical-experimental  comparisons  can  be 

made. It is possible,  however,  to  transform  the  results  for  log-ampIitude  covar- 

iance into  irradiance  covariance.  This  permits  more direct comparisons of 

experiment with theory. 

The starting point is the  covariance of irradiance C, ( p )  , defined as 

and  the  assumptions of homogeneity  and  isotropy  have  been  incorporated  in Eq. 98. 

From  the definition of log amplitude $(x) , we obtain 

84 



We assume  statistical  homogeneity  in  the  plane of the  detectors (I ( XI ) = Io ( x 2  ) 
Io) and  Gaussian  statistics for log amplitude.  Then, 

The  moment-generating  function  with  parameters t 1, t for  the  bivariate  normal 

distribution with random  variables al , a2  is 

where 

( ( a 2 - / L 2 ) 2 )  = w 2 ’  * 

and 

t 
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Therefore,  the first term of Eq. 100 is the  bivariate  normal  moment-generating 

function (m.g.f.) evaluated at t = t = 2, while the  second  and  third a r e  the 

m.g.f. for  the  corresponding  marginal  density  functions.  Using Eq. 99 and  noting 

that 

implies  that 

and 

Then, we obtain 

where C,e ( p )  is the  covariance  function for log  amplitude,  and  the p and o2 symbols 

are  respectively log-amplitude  means and variances  at X,and X, . The irradiance 

correlation  coefficient y at  separation ,c is 
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,i 

and we define  the  log-amplitude  correlation  coefficient F ( p )  through 

C.e (p>/C.e(O) = F ( P )  . 

Therefore, 

It is clear that y( p )  depends upon F ( p )  and also on the  strength of turbulence 

through  the  scintillation  statistic Cx (0 ) .  Expanding the  numerator and  denom- 

inator of Eq.  107 in a Maclaurin series  reveals  clearly  that in  the  limiting 

case, as the  turbulence  becomes  very weak, the  normalized  log-amplitude  and 

irradiance  correlation  coefficients  become  equal.  This is intuitively  satisfying, 

since  for weakly fluctuating  phenomena  the  logarithmic  operator  approaches 

linearity. 

Tatarskig5  presents F ( p )  (Fig. 7-13) for plane-wave propagation  through 

homogeneous  and  isotropic  turbulence, and Fried  derives a similar  result  for 

the  spherical-wave case in Fig. 1, Ref. 96. We can now transform  from log- 

amplitude  correlation  coefficient  to  irradiance  correlation  coefficient  through 

Eq. 107 for any specified  degree of turbulence 1i.e. any  value of C$ ( O ) ]  . This 

has  been  carried out  in  Fig. 23 and  Fig. 24 for  the plane-wave  and the  spherical- 

wave case,  respectively,  and  with  log-amplitude  variance  values of 0.076 and 

0.460. These  particular  values were chosen  to  correspond with the  experimental 

data,  and, in addition, the 0.460 value is on the  order of the  upper  limit of Rytov 

theory.  The  detector  separation has been  normalized by ( h z )  ''*, where h is the 

optical  wavelength  and z is the  propagation  path  length. 

\ 
e 

I d  - 
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Figure 23. Irradiance  correlation  coefficient Y as a function of normalized  de- 
tector  separation p / ( h z )  1’2 . The  curves are obtained from  Tatarskifs2  results 
for  the plane -wave log-amplitude correlation  coefficient. 

Experiment.  The  system  for  measuring spatial correlation is shown sche- 

matically  in  Fig. 25. A vertically  polarized  argon laser beam  radiating  at 

4880 A with a divergence of 0.7 mr  and a diameter of 1.2 mm  was  transmitted 

over a folded 1.17-km horizontal  path. After reflection  from a 51-cm flat mirror  

in  the  field,  the  beam  was  detected  back  at  the  transmitter  station by two photo- 

multiplier  tubes which  had  1-mm entrance  pupils  and which were  spaced  from 

2 to 52 mm  apart.  The  outputs of the  detectors  were  amplified and then  recorded 

on magnetic  tape  through an FM system with 2.5-kHz bandwidth. For each  de- 

tector  separation,  approximately two minutes of data were  taken. 

Analysis of two-point statistics is complicated by the fact that each  detector 

(and  subsequent  electronic  chain)  may  have  different  scale  factors.  However, if 
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Figure 24. Irradiance  correlation  coefficient y as a function of normalized  de- 
tector  separation m '  ( h z )  ''' . The  curves are obtained from  Fried's96  results 
for  the  spherical-wave  log-amplitude  correlation  coefficient. 

all gains  remain  constant  during  the  time  interval  corresponding  to a single data 

point (2 minutes),  then  gain  variation  can  be  easily  taken  into  account. 

When the  recorded  data are played back,  the  voltages Vi and Vz appearing  at 

tape  recorder  outputs 1 and 2 are related  to  the  irradiance  values at detectors 1 

and 2 as follows: 

and 

where K,  and K,  include all detector  and  tape-recorder  gains.  Consider  the 

playback of the  data with outputs V ,  and V, connected  to  amplifier  lines 1 and 2 , 
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Figure 25. Experimental  schematic,  spatia1  correlation. 

respectively. Then the output  voltage Vo after a time  interval  equal  to RC (the 

time  constant of the  averaging  network) is 

where VI and v2 are the  respective  average  values of V, and V2,  and A , ,  A,, A, 

are  amplifier  gains. Similarly, if we repeat  the playback with V, connected  to 
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both  amplifier lines, we get 

Vo = ( A , A 2  A, (V1 E V o 2  . 

Repeating  with V connected to both amplifier  lines we get 

Vo = ( A l A 2  A, ( V 2  - v 2 ) 2 )  E Vo3. 

Therefore, 

Applying Eq. 108, we  get 

Using the  assumption of isotropy in the  detector  plane, we get 

CI1 ( 0 )  = C 1 2  ( 0 )  = c, ( 0 ) .  

Therefore 

So it is clear that one  can  evaluate y for each  particular  separation ,a by playing 

ba,ck the  recorded  data three times and  measuring  the  appropriate  voltages. 

From  the two minutes of data  available  for  each  detector  separation, a 30-second 

91 



portion  was  selected  such  that the signal levels  were  best  contained within the 

linear  range of the  amplifier  and  multiplier circuits. Even so, it was  apparent 

that  some of the  analyzed  data  exhibited  peak  irradiances  which  exceeded  the 

dynamic  range of the  tape  recorder. This problem will be discussed  more fully 

in  the  next  section. 

Experimental  Results.  Typical  data are  compared to spherical-wave t h e w  

and  plotted  in  Fig. 26. Actual  values for the  log-amplitude variance at each  data 

point were not available  in this case,  but the  theoretical  curves of 0.076  and 

0.460 can  be  expected  to  contain  most of the  data. For cases where  the  log- 

amplitude  variance  drops  below 0.076, the  pertinent  theoretical  curve is still 

very  close to that shown for C t  (0) = 0.076. If Cx ( 0 )  becomes  much  greater  than 

0.460, Rytov theory  appears  to  lose its validity,  and  hence  the  analytical  approaches 

which produced  the  results shown in  Figs. 23 and 24 are of questionable  usefulness. 

~. L" 

Figure 26. Spatial  correlation of irradiance  fluctuations. 
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i The data in Fig. 26 show a reasonably good agreement with theory; how 

ever,  there  are  some  rather  disturbing  aspects. For most  detector  separations 

the  data  spread is rather  large  and is certainly greater than  that  which  could  be 

attributed  to  statistical  sampling  theory.  Also,  significant  negative  correlations 

for p / ( X z )  'I2 > 1 appear  consistently  in  the  data of Fig. 26. 

Certainly  some of the data scatter  can  be  attributed  to  the  lack of stationarity 

of the  atmospheric  statistics.  It is well known that the  refractive  index  structure 

constant  can  change by an  order of magnitude  within a few minutes of time. How- 

ever, this does  not  account  for  the  data which lie above the 0.076 curve of Fig. 

26 because this curve is not significantly  different  from  the  curve  for  vanishingly 

small C t  ( 0 )  obtained from Eq. 107. 

Another area of concern is the  effect that atmospheric  deviations  from  the 

Kolmogoroff  model spectrum  might  produce on the  measured  correlation func- 

tion. It is shown in  Appendix B that, i f  the refractive index structure function 

increases as r p  ( r  being  the  distance  between  measurement  points),  then  the 

log-amplitude variance  takes on the  range  dependence L(3,'2tp,'2) and  a  wave- 

length  dependence k (3,'2- '2 ) . Thus if p differs  slightly  from its usual  value 

2/3,* then  it is clear  that  the  range and wavelength  dependence of C x  (0)  a r e  not 

drastically  altered.  However,  it is not clear how seriously  the  shape of the  co- 

variance function would change  in  response  to  varying p. 

- .  " " 

*Lawrence  and  Ochs  have  suggested  in  private  communications that near  ground  the  refractive 
index  structure  function  may  frequently vary as due to the  fact  that input energy to the 
inertial  subrange may be applied throughout the  inertial  subrange  and  not  just at the  outer  scale 
as   is   usual ly   assumed.  
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Additional  data are shown in Fig. 27. In this case the  data  were  processed 

through a digital  computer (Raytheon 520) as well as through  the  analog  instru- 

mentation of Fig. 25. The  computer  evaluated C$ ( 0 )  by calculating  the  moments 

of the  random  variable 1/2 In [I/ ( I)], where I is the  instantaneous  irradiance 

at one of the  detectors shown in Fig. 25 and ( I )  is the  average  irradiance at the 

same  location.  The  value of log-amplitude  variance  changed  from  point  to point 

for both the  afternoon  and  the night data, but excursions  from  the  mean  value were 

nearly  always less than  an  octave.  Therefore,  since  the  dependence of y on 

Cx ( 0 )  is rather weak, we can  meaningfully  form  an  "average  log-amplitude 

variance"  for both afternoon and  night  data. Some of the  raw  data  were  inspected 

in terms of their  probability  density  function  also. A typical  example  for one of 

the 30-second  data  runs is shown in Fig. 28. The  approximately  linear  behavior 

on log-gaussian  probability  paper  indicates  that  the  data  satisfies  this  test  for 

log-normality. 

I 
NIGHT DATA: Cb(0) = 0.076 

0 AFTERNOON DATA: m: 0.460 

RANGE 1 . I 7  KM 

THEORETICAL RESULTS C l ( 0 )  = 0.076 

SPHERICAL-WAVE THEORY Cf(0) = 0.460 
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Figure 27. Spatial  correlation of irradiance  fluctuations. 
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Figure 28. Cumulative  probability of irradiance  fluctuations.  The  data are plotted 
on log-normal  probability  paper. 

The  results  in  Fig. 27 continue to  exhibit  the wide data  spread noted previously. 

The  nighttime  data  also show a significant  negative  correlation  for p/(Az) 1.’2 

21.4. It is interesting  that  the  strong  turbulence  data  tend to take on a different 

shape which is  characterized by increasingly  positive  correlation  for  large  de- 

tector  separations. This was  observed several times in our  data  and  has  also 

been  observed by others,  either  directlyg7yg8 o r  i n d i r e ~ t l y . ~ ~  In Ref. 97 i t  was 

found that y( p )  evaluated at p = ( h z )  1’2 may  be as great as 0.40. 

It is tempting  to  conclude  that  this  change  in  the  measured  shape of y ( p )  for 

strong  irradiance  fluctuations is real and is explainable on the  basis of the  break- 

down of Rytov theory. This may  be  the  case,  since  it is generally  agreed  that 

Rytov theory  does not successfully  predict  the  behavior of C t  (0)  for very  strong 

fluctuations; so one would not expect C t  (0)  y( P )  to be accurate.  However, 
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one must  be  very  cautious  about  the  results of covariance  measurements  made 

on such  strongly  fluctuating  signals.  Extremely  large  dynamic ranges are re- 

quired  for  theinstrumentation,*  and it is not  always  clear  in  published  reports 

what the  actual  dynamic  range  capability is. 

From inspection of the  experimental  results shown  in Figs. 26 and 27 and  from 

the  large  data  spread as well as the  anomalous  negative  correlations which fre- 

quently occurred  for p/(Xz ) ''* > 1, it was  decided  that  there  were three areas 

where  the  experimental  technique  could be improved. In an  attempt to resolve 

whether  the  results had,  in fact, been  affected by the  measurement technique, 

the  following  changes  were  implemented: 

(1) The  dynamic  range of the  instrumentation  was  increased  by 6 db. The 

limiting  processor in the  data  reduction  system  was  the F M  magnetic  tape re- 

corder. The  signal  representing  instantaneous  irradiance is inherently  uni- 

polar, owing to the  type of optical  detectors  employed.  However, by DC-biasing 

the  signal  voltage to one extreme  signal  level,  the  useful  recording  range of the 

magnetic  tape is fully  utilized and is increased by 6 db over  the  unbiased case. 

The  bias  level  must  be  subtracted  during  data  reduction i f  accurate  average 

values are required,  The  signal-to-noise  ratio of the  tape  recorder  in  this con- 

figuration  was 43 db. 

(2) The  low-frequency cutoff implied by the  capacitor  coupling  preceding 

the  multiplier (see Fig. 25) was changed from 4 Hz to 1 Hz. 

"See Appendix C of this report  and  Appendix  A of Ref. 46 for a discussion of dynamic  range 
requirements  in the  measurement of log-normal random variables. 
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(3) The  analog  multiplier  used in the  data  reduction (see Fig. 25) was re- 

placed by a digital  multiplier. 

Steps 2 and 3 were  actually  implemented by replacing  the  preamplifiers 

(Al, A 2 ) ,  the  multiplier A,, and  the RC averaging  components with a digital 

processor:  the  Hewlett-Packard Model 3721 A correlator.  The  analog  multiplier 

was a Burr-Brown Model 1671 and had a bandwidth of 40 kHz and a transfer func- 

tion  accuracy of 0 . 1 5 $ .  The bandwidth was  not a constraint  (the  tape  recorder 

was  run at 7.5 inches  per  second  and  limited bandwidth from DC to 2.5 kHz) , but 

the  transfer function  accuracy  was a source of concern.  Especially  for  large 

N’( h z ) 1’2 values, one can  expect a significant  portion of the  covariance  to be 

contributed when one  input is at a very low level  (where  the  percent e r r o r  is 

high) and  the other input is at  a rather high level.  Detailed  specifications  for 

the 3721 A correlator are not  listed  here,  since they are readily  available in the 

manufacturer’s literature. However, we do note  that  it is a completely  digital 

device with a low-frequency cutoff of either 1 Hz or DC and a high-frequency 

limitation of 250 kHz. It is possible  to  compute any of the following in  an on-line 

configuration: 

(1) Autocorrelation of a single signal 

(2) Cross-correlation of two signals 

(3) Amplitude  probability  density  function 

(4) Amplitude  cumulative  density  function. 

Al l  correlation  calculations are made  with 100 timelags of selectable spacing. 

Results are presented on a storage  oscilloscope  and can be interfaced  with an 

X-Y recorder. 
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Additional  data  were  recorded  with a biased  recording  technique  and  processed 

through  the  digital  correlator.  The  results are shown in Fig. 29. Log-amplitude- 

variance  values  were not  available for  these  data, but  both  the  morning and evening 

fluctuations  were  relatively weak and  can be expected  to lie closer  to  the 0.076 

curve  than  to  the 0.460 curve.  The  quantity of data analyzed  was  small*  but,  even 

so, some  significant  differences are  apparent.  The  data  spread between runs 

(which were  separated  in  time by 11 hours) are considerably less than  those  noted 
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Figure 29. Spatial  correlation of irradiance  fluctuations (digital-data processing), 

*The  digital  processor  was  obtained on a short-term loan basis  and was  available  only for two 
days.  During this time  the spatia1  correIation  data  presented in Fig. 7 ,  a s   we l l   a s  a somewhat 
larger quantity of spectral  correlation  data  [to  be  presented  in  Part(b) of this  section], were 
reduced and plotted. 
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previously  in  Figs. 26 and 27. Also, the  anomalous  negative  correlations  for 

P 2 (Xz) 1'2 are no longer  present.  Judged by this  limited  data  sample,  it  ap- 

pears that the  extension of the  dynamic range and  the  employment of the  seem- 

ingly more  accurate digital processing  have  resulted in measurements which are 

in  excellent  agreement with spherical-wave  theory. 

An added  output  which was available  from this digital analysis  was  the  more 

general time-dependent  correlation  coefficient Y( P ,  7 )  , defined as 

((I(% t t') - <I(Xl7 t ++} {I(X2; t) - (I(X2, t))}) 

p = /x1 -X21  

The  assumptions of isotropy  and  homogeneity are again  incorporated  in  the  defini- 

tion; y ( p ,  0 )  is identical with the  correlation  coefficient ~ ( p )  defined  in Eq. 107 

and  used  in  Figs. 23, 24, 26, 27, and 29. 

Consider  the following  model for  the  propagation  problem.  The  turbulons 

which exist along  the  optical  path  vary  very  slowly  in  time  but are transported 

across  the path in a horizontal  sense by a wind vector vH, which is both  hori- 

zontal  and  perpendicular  to  the  optical path.* In this  situation  the  field at 2, at 

- - . . .  

*We note  that  the  component  of  the  wind  vector  which is along  the path has  some  effect on the 
problem, but it is shown in Ref. 2,  p. 215, that  this is usually  insignificant. 
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time t is the  same as that at x2 at time 

where 2, and x, are position  vectors which are collinear with one  another  and 

parallel  to vH, and  which are also  assumed  to lie in a plane  perpendicular  to 

the  optical  path.  The  plus or  minus  ambiguity is easily  resolved by inspecting 

the  relative  directions of x1 - x, and vH ,N. If this  model is accurate, one can 

always  expect  to  obtain  nearly  perfect  correlation  between two side-by-side  de- 

tectors  (such as in Fig. 25) for  some  particular  time delay 

The  time-dependent correlation function Y ( P ,  7)  was  evaluated for most of the 

data shown in Fig. 29. Some typical  results are presented  in Figs. 30 and 31. 

The  data of Figs. 30 and 31 . A  were  recorded  about one  hour after  sunset. The 

wind was  rather  calm, with an  average component of about 2 . 0  meters  per second 

perpendicular  to  the  optical path. This wind measurement  was  made at the 

transmitter-receiver  station, and it is not known how well this  measurement 

represents  the  actual  average wind velocity  along  the path.  It would have  been 

more meaningful to measure  the  velocity at the  folding mirror  location,  since 

turbulence  in this region of the  path  can  be  expected to dominate  the  field 
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Figure 30. Time -dependent spatial  correlation 
coefficient y ( p ,  7 )  as a function of time  delay 7 .  

fluctuations, but this point was  not accessible.*  The  Fig. 31 .B data were recorded 

about one  hour before  sunrise,  during a period of gusty  winds  with  an average 

perpendicular  component of about 7.5 meters per second. 

*For spherical-wave  propagation  the  turbulence  near  the  source  has  little  to  do  with  the  amplitude 
- ” - - ~ _ _  

f luctuat ions,   s ince in this  region  the  beam  cross  section is small compared to the  turbulence 
sca le   s ize .   The   ne t   e f fec t  of this   turbulence  is  to “steer”  the  beam as a whole  rather  than  break 
up  the  beam.  Near  the  receiver,  the  small-angle  scattering  aspect of optical  propagation  tends 
to minimize  the  effects of turbulence. 
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The  failure of any of the  curves of Figs. 30 and 31 (or any of the  other  data) 

to  exhibit  near-unity  correlation  at  some  time  delay  shows  clearly  that the  often- 

assumed  propagation  model  described earlier is inadequate  for  predicting  the 

time  behavior of irradiance  fluctuations.  Several possibilities exist  for explaining 

the  observed  data: 
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(1) The  motion of the  turbulons  across  the  optical  path  may  contain a signifi- 

cant  vertical component  due to buoyancy  effects induced by the  lapse  rate. This 

effect  can  be  expected  to  be  emphasized in rather  calm conditions  (such as 

existed in Figs. 30 and 31.B). 

( 2 )  The  average wind  component  perpendicular  to  the  propagation  path  may 

differ  significantly  along  the path. 

(3) The  concept of "frozen-in-turbulence"  described earlier may not be 

valid. 

It is felt  that (2) is probably not very  significant,  since for spherical-wave 

propagation  it is the  turbulence  near  the midpoint of the  path  which  dominates 

and  the average wind velocity  need  only  be  uniform in this  region.  Also,  alter- 

native (3) seems unlikely since this concept  (usually referred  to  as  Taylor's 

hypothesis)  has  been  extensively  investigated by micrometeorologists2~~z~ and 

is generally  considered  to  be a valid  concept. We conclude that  it is most  likely 

the  addition of a vertical component  to  the  motion of the  turbulons which has 

altered Y ( P ,  7 ) from  its  expected  form. It is quite  possible  that  greater  degree 

of correlation would have  appeared  for  some  timelag if the  detectors had been 

located  such  that  the line joining their  respective  apertures  was  tilted  rather 

than  completely  horizontal. We summarize  the  results of this section  as follows: 

(1) It has been  shown  that the  previously  derived  log-amplitude  covariance 

can  be  transformed  to  the  more  useful  irradiance  covariance  under  the  assump- 

tion of log-normality. 

(2)  Measurements of the  irradiance  correlation coefficient  over a 1.17-km 

horizontal  path  have  been shown to  be in good agreement with the  Rytov  spherical- 

wave  theory. 
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(3) The  propagation  model  employing  "frozen-in-turbulenceff  undergoing 

horizontal  transport has been found inadequate in this experiment  under low- 

wind conditions. 

b. Spectral  Correlation:  Theory. We next  consider  the  problem of evaluating 

the  degree of correlation  between  amplitude  fluctuations which are imposed on 

two beams of different  frequency which  have traversed  exactly  the  same  optical 

path. We neglect  the  dependence of the  average  index of refraction on wavelength, 

since  the  average  value  does not enter  into  the  problem of amplitude  fluctuations. 

Heuristically,  different  frequency  beams will exhibit less than  perfect  correlation 

in  their  amplitude  fields  since  the  ratio of wavelength  to  turbulon size is different 

for  each  beam.  Thus,  even though each  propagating  beam "sees" the  exact  same 

refractive index field,  the  amplitude  fields  will  tend  to  lose  correlation if the 

measurement  plane is far removed  from a substantial  amount of the  turbulence. 

The  spectral  covariance of irradiance C, (0 ,  0 )  can  be  defined as 

c ,  ( 0 ,  6) = ({Il (X> - 

where 

I (x) = the  irradiance of beam 1 (of wave number k ) , 

I, (x) = the  irradiance of beam 2 (of wave number k 2 ) ,  

and 
Ik,  -k l l  

k, + k l  ' 
e =  

and we emphasize  that both irradiances are measured  at  the  same point x. A s  

was  noted earlier, for  spherical- and  plane-wave propagation, 
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(we drop  the  vector notation on the  position  vector by  applying the  usual homo- 

geneity - isotropy  assumptions.)  Substituting Eq. 99 into Eq. 116, we write 

Using the  relationship 

and  the  right-hand  side of Eq. 101, we have 

where Cx ( 0 ,  0) is the  log-amplitude  covariance  for  beams 1 and 2 and is defined 

as 

In Ref. 100 it is shown that, for plane-wave  propagation with wave numbers k and 

k, through  homogeneous  and isotropic Kolmogorov-type  turbulence,  the  generalized 

spectral  covariance of log  amplitude C t  ( p ,  0 ) may be written as 
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where F is the  function  use earlier in Eq. 106* and Cd (0) is evaluated 

at wave  number 1 k, - k, I/k2 + k,. Since F(.O) = 1, C t  (0, 0)  becomes 

E Cx' (0)  G ( B )  . 

Substituting this result  into Eq. 118, we have 

Evaluating Eq. 104 at  P = 0, we have 

and,  substituting  this  into  the  defining  equation for  the  spectral  irradiance cor- 

relation  coefficient y ,  * ( e ) ,  we can  write 

The  result is now in a form  such  that  for  various  strengths of turbulence  (i.e., 

various  log-amplitude  variances)  the  correlation  between two plane  waves with 
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wave numbers k and k, can be  numerically  evaluated. We assume 7/6-power 

wave number  dependence for log-amplitude  variance (Eq. 52). Results are shown 

in Fig.  32,  where  beam 1 is held  constant at 6328 A and beam 2 varies over 

shorter wavelengths.  The assumed  turbulence  levels  apply  to  beam 1. The 

Cx ( 0 )  values  were  chosen  so as to  bracket  the  conditions  under which Rytov 

theory  can  be  expected  to  be  valid.  The 0.05 C t  ( 0 )  curve is not significantly 

different  from  the  vanishingly weak turbulence condition. So now, just as in 

Part (a), we have  theoretical  predictions which can be rigorously  compared  to 

experiment. 

0 

1 

1 

Experiment.  The  experimental  schematic is shown in  Fig. 33. A helium- 

neon laser operating  at 6328 A was aligned  collinear with an  argon laser through 

a mirror-beamsplitter  combination  and  transmitted  over  the  folded 1.17-km 

horizontal  path.  The two lasers had the following characteristics: 

Helium - Neon Laser  (Spectra-Physics 130B) 

Power  (TEM,,): 1.0 mW. 

Beam diameter (l/e * points) : 1.4 mm.  

Beam  divergence  (total  angle): 0.7 m r  . 
Amplitude  stability(short  term): 1% (RMS). 

Amplitude  stability (long term) : 2.8% @MS) . 
Wavelength: 6328 A .  

Argon Laser (RCA - LD 2100) 

Power ("EM ,,, all lines): 125 mW. 

Beam  diameter (l/e2 points): 1.2 mm.  

Beam  divergence  (total  angle) : 0.7 m r  . 
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Figure 32. Irradiance  spectral  correlation  coefficient y1 (0) .  ,The assumed 
turbulence  levels apply to beam 1, which has wavelength 6328 A in all cases. 

108 



i 

Amplitude  stability  (total) : 

Wavelengths : 

1.5% (RMS) . 
4579 individual  power 5 mW. 

4658 b individual  power 1 mW. 

4727 A individual  power 5 mW. 

4765 A individual  power E6 mW. 

4880 A individual  power 50 mW. 

4965 A individual  power 10 mW. 

5017 h; individual  power 5 mW. 

5145 A individual  power 30 mW. 

0 

0 

The  argon  unit  was  operated on  one spectral line at a time.  Each  photomultiplier 

detector  was equipped  with optical  filters  such  that  detector 1 "saw" only the 

He-Ne wavelength  and  detector 2 "saw" only the  particular  argon wavelength 

being  transmitted.  The  detected signals were  amplified, as required, and  recorded 

on magnetic  tape  in a manner  identical  to that described earlier. The two signals 

were  later played  back  through  the  analog circuitry of Fig. 33 to  evaluate y, (0) .  

Results.  Data  were  recorded  under  conditions of strong  (mid-afternoon) 

and weak (night)  turbulence.  The  results are shown in Fig. 34 superimposed 

on the  theoretical  predictions of Fig. 32. Each  plotted  point  represents 40 seconds 

of data.* Additional  night data are shown in  Fig. 35.  The  nighttime  data show 

an  acceptably  small  spread but exhibit  very  poor  agreement with theory.  The 

*We note  that  this part of the  report actually  compares  plane-wave  theory  with  spherical-wave 
experiments. A s  far a s   i s  known,  no  spherical-wave  analysis of this problem is   avai lable .  
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Figure 33. Experimental  schematic,  spectral  correlation. 

daytime  measurements  appear  more  compatible with theory  but  have a large 

spread. A s  before, no significant  portion of this  spread  can  be  ascribed  to sta- 

tistical  sampling  theory,  since  the 2 B e q ,  T product is large.” Both sets of meas- 

urements  (Figs. 34 and 35) were obtained  under weak-wind conditions.  Typically, 

the wind speed  ranged  from  absolute  calm up to 2 meters  per second. A s  has 

been  noted by other  experimenters,  under  such  conditions  there  may not be 

enough turbulent  energy  present  to  generate  an  inertial  subrange. Under such 

*See Appendix A for a  discussion of the  statistical  aspects of the problem. 
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Figure 34. Experimental  results,  spectral  correlation-run # 1, analog 
data  reduction. 
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conditions,  the  turbulent  field  can be expected  to  lose its homogeneous  and  iso- 

tropic  properties  and take on  something  other  than a Kolmogorov-type spatial 

spectrum.  Solutions to  the  optical  propagation  problems do  not exist for  such 

conditions;  therefore,  measurements  taken  under  such  circumstances are 

nearly  meaningless.  Sufficient  meteorological  instrumentation  was not avail- 

able at the  time of measurement  to  determine  definitely that this  was  the case ; 

therefore,  this  explanation is merely  offered  conjecturally.  The  conditions 

for  the  existence of an  inertial  subrange  during midday are less dependent  on 

wind speed,  since the strong  lapse  rate which usually  exists  at  this  time is a 

potentially  large  source of input turbulent  energy. It is possible  that  the after- 

noon data of Fig. 34 are more  representative of a properly  conducted  experiment. 

After this preliminary look at data, it was  decided  that  the  remainder of 

the  experimental  measurements should  not be taken at night;  this was  to  minimize 

the  possibility of encountering  non-isotropic  turbulence. In addition,  the  experi- 

mental  modifications  described  in  part a. were installed.  That i s ,  the  tape- 

recorder dynamic range was  increased by 6 db,  the  low-frequency cutoff in the 

covariance  calculation  was  changed  from 4 Hz to 1 Hz,  and a digital  processor 

was  substituted  for  the  analog  multiplier  and  averaging circuits. Some range 

flexibility  was  also  incorporated by installing  another folding mirror  on the  range. 

This  mirror  was  also  flat, with a diameter of 3 0 . 5  cm, and  located so as to  pro- 

vide a second  folded  path of length 400 meters.  The  results of measurements 

taken  over  this  short  path  in late January are shown in  Figs. 36-39. The  graphs 

are labeled with the  hours of the day of the  respective data run, with zero hour 

a t  midnight.  Each  plotted point represents 30 to 60 seconds of raw data. A 
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Figure 36. Experimental  results,  spectral  correlation-run # 1, digital 
data  reduction. 
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Figure 37. Experimental  results,  spectral  correlation-run # 2, digital 
data  reduction. 
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data  reduction. 
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Figure 39. Experimental  results,  spectral  correlation-run # 4, digital 
data  reduction. 
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typical set  of measurements (Le., a data  run at each of the 8 argon laser wave- 

lengths) took about 30 minutes  to  complete. After each  data  point,  the  optical 

alignment  between  transmitted  and  received  beams was checked. Both photo- 

multiplier  detectors  were  checked at each  wavelength  to  make  certain  that  no 

cross-talk  existed. 

The  values  for y l ,  exhibit a very large scatter,  although  the large  nighttime 

correlations of Figs. 34 and 35 are absent.  The 4727 data  point of Fig. 36 and 

the 4965 A measurement of Figs. 37 and 41  were  lost  during  the  data  analysis 

procedure owing to operator  mishaps. 

0 

The  measurements  taken  over  the  full  1.17-km  path are shown in  Figs. 40-42. 

A s  in  the  short-range  measurements  the  data  scatter is so large that it masks 

any  decrease of correlation with  wavelength, if indeed  there  really is any over 

the  span  inspected (i.e., 5145 to 4579 d). It is interesting  to  note that an  order 

of magnitude  change  in  the refractive  index  structure  constant C,’ would the- 

oretically  be  sufficient  to  move a data value  from  the Cx ( 0 )  = 0.05 curve  to a 

point  somewhat below the Cd (0) = 0.45 curve. In this  light,  the  results obtained 

in  Figs. 34-42 should not be  too surprising. 

The  average  values of the  short-  and  long-range  data a re  pIotted in Figs. 43 

and44,  respectively.  The  time-dependent  correlation  coefficient y, , (8) defined 

as 
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Figure 40. Experimental  results,  spectral  correlation-run # 5, digital 
data  reduction. 
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Figure 41. Experimental  results,  spectral  correlation-run # 6 ,  digital 
data  reduction. 
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Figure 42. Experimental  results,  spectral  correlation-run # 7, digital 
data  reduction. 
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was  also  evaluated  for  each  data point in Figs. 36-42. In all cases y, (0 ,  7 )  was 

maximum  for 7- = 0. We summarize  spectral  correlation as follows: 

(1) The spectral  correlation  coefficient of log  amplitude has been  transformed 

to  the  irradiance  domain  in  order  to facilitate experiment-theory  comparisons. 

(2) Measurement of spectral  correlation  coefficients  over 0.4- and  1.17-km 

horizontal  paths  has not  shown  any decrease in correlation  in  the wavelength 

range 5145 to 4579 A. 
0 

(3) A typical  value  for  the  spectral  correlation  coefficient between 6328 A 

0 

and 5000 A over a 1.17-km  horizontal  path is about 0.7.  

2.5 Mean-Square  Error  and Chi-square Testing of Irradiance Probability Density 

Functions 

The  form of the  density  function which describes  the  amplitude  fluctuations 

of an  optical wave has  recently  been  questioned on  both t h e ~ r e t i c a l ~ ~ , ~ ~ ~  and  ex- 

perimenta1101,102 grounds.  Previously, owing to work in  the  Soviet Union2 and 

the United  state^,^^,^^^ the  log-normal  distribution  had  been  accepted as ac- 

curately  describing  amplitude  statistics.  Recent  discussions  in  the litera- 

ture, however,  have  reflected  a  dissatisfaction with this result and  have  indicated 

that  the  Rayleigh or Rice  distribution  may  be  more  accurate. In this  section,  the 

log-normal,  Rayleigh,  and  Rice  distributions are discussed  and are compared with 

experimental  data  obtained with visible (0.488 p )  and  infrared (10.6 p )  sources. 

The  comparison  between  data  and  each of the  three  model  distributions is car- 

ried out f i rs t  through a mean-square error  cri terion (which emphasizes  the 

modal  region of the  distribution)  and  secondly  through a chi-square test (which 
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emphasizes  the tails of the  distribution).  Each of the three distributions is dis- 

cussed below so as to  establish its basis in  optical  propagation  theory. 

a. Log-Normal  Distribution. Following Tatarski (Ref. 2 ,  Chap. 7), we con- 

sider a field E which is composed of an unscattered  component 

and scattered components 

E, = A, exp [ j s k ]  3 

and, for small  fluctuations, 

Considering  the real part of Eq. 125, we have 

In A A0 = 2 C 0 S ( S k  - s o )  
k 
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The  left-hand  side of Eq. 126 is the  random  variable log amplitude  and, as the 

number of independent  contributors (i.e., the  range of k) becomes  large, the 

Central  Limit  Theoremlo4  dictates that the  amplitude statistics become  log- 

nor  mal. * 

Assuming  Gaussian  behavior  for  log  amplitude,  define its variance and mean 

as u,( and WX, respectively,  and  note  the following relationships: 

and 

Eqs. 127b and 127c  follow from Eqs. 103 and 104, with u; and I, being  the  var- 

iance  and  mean of irradiance,  respectively. 

Substituting  Eqs.  127  into  the  Gaussian  probability  density  function  for  log 

amplitude  and  transforming  to  irradiance  quantities, we find  the irradiance  density 

g ( 1 )  to  be 

*Note that  the  imaginary part of Eq. 125 i s  

which  implies a Gaussian  behavior for the  phase  fluctuations  when the  range of k is  large. 
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It is now clear  that for log-normal-amplitude  fluctuations  the  irradiance  density 

can  be  evaluated by measuring  the first two irradiance  moments,  solving for .;e' 
through Eq. 127c,  and  substituting  the  result  into  Eq.  128. 

b. Rayleigh  and  Rice D i s t r i b ~ t i o n s . ' ~ ~  In this  case  the  total  field is com- 

posed of a coherent  component A, and an incoherent  component  which is repre- 

sented as a narrowband  Gaussian  process.  That is, 

~ _ I _ _ " -  

E ( t )  = [A, f x ( t ) ]  cosw, t - y ( t )   s i n w ,  t 

where x and y a r e  independent  Gaussian  processes with 

and  variance u2.  Equation 120 can be rewritten as 

E ( t )  = r cos (w, t + + ( t ) ) ,  

where 

and 

The  probability  density  for r is called  the  Rice  distribution  and is written 105 
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where I, is the  modified  Bessel  function of order  zero. In the  limiting case, as 

nearly all the  energy is scattered, A, approaches  zero  and  the  probability  density 

for r approaches  the  Rayleigh  density R a  ( r ) written as 

R a ( r )  - exp [- $1 r 
U* 

Using d e W ~ l f ’ s ~ ~  results, when the  field  amplitude is distributed  according  to 

Eq. 131, we can  write  the  irradiance  density R i ’  ( r )  as 

R i ’ ( r )  - 1 exp [ ( I  ‘ I d ) ]  r f i ]  
Io - I d  I o - I d  I o  ’ 

where 

I, = E111 

and 

When the  specular  component  becomes  vanishingly  small, I, - 0 and the  irradiance 

density  becomes 

The  irradiance  densities  specified by Eqs. 133 and 134 will  be  respectively  called 

the  modified  Rice  and  the  modified  Rayleigh  in  the  remainder of this  discussion. 
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A s  before,  it  should  be clear that if the  amplitude  field is  assumed  Rice- or 

Rayleigh-distributed the corresponding  irradiance  density  can  be  easily  gen- 

erated by measuring  the first two moments of the  irradiance  fluctuations and 

substituting  into Eq. 133 or Eq. 134. 

In summary,  the  approach  used  here is to measure  the first two moments 

of the  experimental  data,  and  using  these  numbers  generate  the three model dis- 

tributions which would have  been  required  in  order  to  produce  such  experimental 

data.  The three distributions are then  tested to evaluate  their  compatibility with 

the  measured  density  function. 

c. Probability  Density  Tests.  Let  the  model  log-normal,  Rayleigh, and 

Rice  distributions which are synthesized  from  the  data  be  called  g(I),  Ra'  (I), 

and Ri '  (I),  respectively.  Then  the  mean-square e r r o r  (MSE) of the fit is 

i= 1 

and 

where  d(1 ) is the  experimentally  measured  density  for  the  ith  amplitude class 

and N is the  total  number of classes  into which  the  fluctuating  irradiance signal 

is partitioned.  Clearly  this  test is not effective  for  evaluating  the f i t  on the tails 
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of the  distribution,  since  the  quantity  inside  the  bracket  (Eq. 135) is always  small 

in that region. 

In order  to test the tails of the  distributions,  the  chi-square  goodness-of- 

fi t  parameter is employed.  The  defining  equations are 

{ d ( I i )  - R a d  ( I i ) } 2  

Ra’ ( I i )  
x:a e NAI 7 

i= 1 

and 

{ d ( I i )  - R i ’  ( I i ) } 2  

R i ’  ( I i )  X R i ’  - = NO1 , 
i =  1 

where A I  is the  width of the  amplitude  class  (assumed  constant). 

The tails of the  distribution are emphasized by normalizing  inside  the  sum- 

mation by the  model  density. If the  synthesized  density is from  the  same  family 

as the  raw  data,  then  it is well kn0wn104,106 that, as the  sample  size  becomes 

large, x 2  takes on a chi-square  density with N-1-S degrees of freedom,  where S 

is the  number of parameters of the  model  density which were estimated  from  the 

data  sample. In this case, for any ct the A can  be  evaluated which satisfies 

If we define  the  null  hypothesis H,, that  the  target population  had a density  be- 

longing to  the  same  family as the  model  distribution,  then H, is rejected if 
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is greater than A and is accepted if H, is less than A. The  rejection of H, when 

it is actually  true is called a Type I e r r o r  and  has  probability a. The  accepting 

of H, when it is actually false is called a Type I1 error ,  but  nothing definite  can 

be  concluded  about its probability unless a particular  form is assigned  to  the 

target  density. 

d. Experimental  Analysis. Two types of experimental  measurement  will  be 

analyzed in what  follows.  The  only  difference is in  the type of optical  source 

utilized. We first discuss  the  results  obtained with a CO, laser radiating at 

10.6~ and  follow  with the  results obtained  with an  argon laser operating  at 

0 . 4 8 8 ~ .  

The 10.6~ signal analysis is based on the  same  raw  data  that were used in 

Section 2.2 for log-amplitude  variance  analysis. However, it was  apparent  from 

the  statistical  analysis  in Section 2.2 that  longer  time  records would be  required 

for  density  function  estimation. A  40-second record  was  the  maximum  practical 

length  for  computerized  processing.  The  amount of data available  was  seriously 

reduced  because of frequent  shifts  in  the laser output power. All  the data were 

inspected on a chart  recorder, and only those  40-second  increments which were 

free from  transmitter power  fluctuations  were  analyzed.  The  detected  irradiance 

signal (described in Section 2.2) was sampled at a 1-millisecond rate by an 

analog-to-digital  converter and fed  into a computer.  The  computer  divided  the 

amplitude  range  spanned by the signal into 200 evenly  spaced  classes.  The  prob- 

ability  density  function d( I )  and the first two moments  were  computed.  These 

moments  were  then  substituted  into  Eqs. 128, 133,  and 134 in  order  to  generate 

g( I ) ,  R i  ' ( I), and Ra' ( I ) .  The  mean-square e r ro r  calculation  was  then  carried 

\ 
P 
! 
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by means of Eq. 135, and the  chi-square  calculation  was  performed by means of 

Eq. 136. The results are shown in Table XI. 

TABLE XI 

Mean-Square Error  and  Chi-Square Test  Results of Weak- 

Scintillation Data (A = 10.6 ,LL ) 

Data 
Record 

X 1  

$2 

$3 

x4 

#5 

1 Duration 
( s e d  

40 

40 

40 

40 

40 

T Mean-Square Er ro r  T 
MSE 

0.247 X 10" 

0.175 X 10" 

0.899 x 10" 

0.218 

0.184 

MSERaf 

0.319 x 10' 

0.260 x 10' 

0.111 x 102 

0,168 x lo2 

0,903 x 10' 

M E R i #  

0.211 x 10" 

0.250 x 10" 

0.957 x 10" 

0.278 

0.127 

" 

" 

XLN 
2 

0.243 x lo3 

0.192 X lo3 

0.179 x 10; 

0.231 x lo3 

0.866 x lo3 

Chi-square 

XRa' 

0.252 x l o5  

0.230 X l o 5  

0.252 x lo5 

0.259 x lo5  

0.255 X lo5 

X R  i' 

0.139 X lo3 

0.228 x lo3 

0.182 X lo3 

0.291 X lo3 

~ . 3 4 1  X lo3 

In all cases the  modified  Rayleigh is a poor fi t  to  the  data.  The  log-normal  and 

modified  Rice  appear  nearly  equally  matched  to  the  data  from  both a mean-square- 

e r ro r  and a chi-square  criterion. In Table XI ,  ratios of mean-square e r ro r  and 

chi-square are shown for each  record.  Also shown is the measured  scintillation 

statistic cI/Io for the  experimental data. The  average  value of the  mean-square 

error   ra t io  is 1.01  and  the  average  value of the  chi-square  ratio is 1.38. 

The  three  model  densities  and  the  experimentally  measured  density for 

record #1 are shown in Fig. 45. Extra  points are plotted near  the mode where 

the data scatter is greatest. In places,  the  modified  Rice is so close  to  the  log- 

normal that they  cannot be visually  separated  on a graph of this type.  Table XI11 

is a portion of the  computer  printout for Record #2. Columns 6-8 are the 
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TABLE XI1 

Mean-Square Er ro r  and  Chi-square Ratio for Weak-Scintillation  Data 

Data  Record I 
#1 

#2 

#3 

#4 

#5 

1.17 

0.70 

0.94 

0.78 

1.45 

( x:N/x:i 
1.75 

0.84 

0.98 

0.79 

2.54 

5 / 1 0  

0.119 

0.126 

0.086 

0.086 

0.095 

cumulative  distributions  for  the  data,  log-normal, and Rice  densities.  Columns 9 

and 10 list  the  contributions  to X A  and from  each of the 200 classes. 

It is apparent  that,  under  mild  fluctuation  conditions (oI/Io 2 0. l), the  log- 

normal  and  Rice  densities are very  similar and are equally  suitable  for  describing 

amplitude  fluctuations. 

The  visible  data were obtained  over  the  1.17-km  path with the argon laser 

(X = 0.488 p )  described earlier. The  detector had a 1.0-mm  aperture and  pro- 

duced a signal which was  recorded on magnetic  tape  through  an F M  module.  The 

signal level  was  biased so as to  maximize  the  tape-recorder  dynamic  range (as 

described  in  Section 2.4a). The  bias  was  subtracted  from  the  data  during  the 

computer  analysis.  Essentially  the  same  analysis  was  performed on these  data 

as that just  described  for  the CO, data. However, the  interpretation of the re- 

sults is more  complicated, owing to  problems  caused by dynamic  range  limitation 

in the  instrumentation.  The  fundamental  problem  is  this:  the  signal which i s  

analyzed by the  computer is actually  the  sum of a noise signal (tape recorder 

noise,  photomultiplier  noise, etc.) and  the  desired irradiance signal.  Considering 
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Figure 45. Synthesized  log-normal  and  modified  Rayleigh  and  Rice  distributions 
for weak irradiance  fluctuations.  The  normalized RMS irradiance fading 
( m I / ~ o  ) is 0.119. 
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Table XIII. Computer  Results for Record # 2  of the Weak-Scintillation Data 

Computer results for record x 2 of the weak scintillation  data. 

1 .  2. 3 .  4 .  5 .  6 .  7. a. 









the  noise  and  irradiance  signals  independent, we conclude  that  the  probability 

density of the  composite signal is a convolution of the  individual  densities as- 

sociated  with  the  noise  and  irradiance  signals. When the  irradiance  fluctuations 

are strong,  there is a significant  amount of time when the  irradiance  value is near 

zero. When the  noise is summed  with  these  near-zero  values,  the  resultant fre- 

quently  takes on negative  values. In order  to  compsnsate  for  these  physically 

impossible "negative irradiance''  values,  the d(  I i ) ,  i = 1, 2, . . . 200, as printed 

out by the  computer, was shifted so that d(  I ) was  assigned  to  the first positive 

class, d ( I  ) was assigned  to  the  second  positive  class,  etc. 

An additional  problem area was  that  the  tape  recorder  noise  was  not a con- 

stant  but depended on the  signal  level  being  recorded. A calibration  sequence 

consisting of a plus, zero,  and  minus DC voltage was recorded on the  magnetic 

tape  just  prior  to  each  data  run.  During  data  analysis,  the  variance  associated 

with each of these  levels  was  analyzed so as to  evaluate  the  tape-recorder  noise 

at  each  record  level. In this  experiment  the  negative  calibration was  very  near 

the  zero  irradiance  level for the  system, and therefore  it was this  noise  level 

which was  important. For chi-square  calculations,  it was noted  that  the first 

few classes of the  irradiance  density (which were  seriously  contaminated by the 

noise)  were  dominating  the  chi-square  value  for  each of the three model  densi- 

ties. For this  reason,  the  first two or  three  classes (depending on the  measured 

noise)  were  omitted  from  the  chi-square  calculation  in all cases. 

The  results of 23 data  runs of 20-seconds  length are shown in Table XIV. 

The  standard  deviation  divided by the  mean  irradiance is also  listed  for  each 

record. Note that when uI/Io is greater than 1, it  is not possible  to  generate 
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Data 

Recor 

#1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21  

22 

23 

140 

TABLE XIV 

Mean-Square Error and Chi-square Test  Results for Strong- 

Scintillation Data (h = 0.488~) 

MSE 1.N 

0.304 x 10' 

0.413 x 10-2 

0.152 x 10 

0.116 x 10-  

0.286 x 10- 1 

0.263 x 10- 

0.240 x 10-1 

0.160 x 10" 

0.369 x 10-1  

D.266 x 10" 

1.851 x 10-2 

1.113 x 1 0 - l  

1.440 x 

1.400 x 

1.220 x 1 0 - 1  

1.209 x 10-  

1.203 x 10- 

1.740 x 1 0 -  

1.220 x 10" 

1 .  105 x 10-  

1.190 y 10 1 

1.118 / 10-  1 

1.128 y 10 

MSE Rill 

0.249 

0.273 

0.401 

0.358 

0.552 

0.829 

0.648 

0.527 

c.439 

0.389 

0.554 

0.697 

0.447 

0.426 

0.378 

0.322 

0.440 

0.378 

0.360 

0.354 

0.394 

0.416 

0.710 

MSE, I 

0.178 

0.161 

0.295 

0.269 

0.333 

0.416 

0.362 

0.276 

0.420 

- 

0.257 

0.238 

0.158 

0.191 

0.310 

- 

0.273 

0.227 

0.319 

0.307 

0.342 

0.279 

0.369 

- 

X L N  
2 

- 
275 

286 

389 

413 

461 

460 

461 

410 

645 

454 

273 

310 

313 

280 

601 

518 

566 

309 

527 

2 97 

434 

306 

287 - 

2 
X R a '  

3,134 

3,053 

3,470 

3,753 

4,064 

4,415 

4,743 

4,480 

4,800 

3,870 

3,265 

5,917 

4,368 

4,037 

4,150 

3,427 

4,837 

3,785 

3,647 

2,843 

3,303 

3,009 

3,514 

2 
A', 1 ' 

3,090 

3,080 

4,180 

10,810 

195,000 

8,900 

17,300 

625,000 

6,840 

- 

2,710 

13,100 

4,118 

5,222 

5,775 

- 

9,000 

15,540 

4,810 

4,830 

5,450 

5,254 

2,100 

0 1  Io 

0.885 

0.843 

0.885 

0.892 

0.833 

0.800 

0.823 

0.812 

0.970 

1.005 

0.806 

0.732 

0.762 

0.79 

0.915 

1.01 

0.838 

0.840 

0.940 

I .  935 

3.932 

0.865 

0.815 



a Rice  density  using  deWolf's results (see Eq. 133). The results show that in 

all cases the  log-normal  density is a better f i t  to  the  data  from both a mean- 

-square-error and  chi-square  criterion. Fig. 46 plots  the  ratio of mean-square 

errors   for   the modified  Rayleigh  and  log-normal  distributions  versus  strength of 

the  irradiance  fluctuations ( u I /  I ) . The  ratio  decreases  substantially as the 

fluctuations  grow  stronger, but there is still an order-of-magnitude  difference 

for  very  strong  fluctuations. Fig. 47 plots  the MSE ratio  for  the modified  Rice 

and log-normal  distributions  and  shows  the  inadequacy d the former.  The 

value of the  log-normal MSE is shown in Fig. 48, and no clear  trend is evident. 

Corresponding  plots  for  the  three  chi-square  values are shown in  Figs. 49-51. 

These  graphs  also show clearly that the  log-normal  distribution is a much better 

fit to the  data  than  the  other  models  used.  The three synthesized  densities  and 

the  data of data  record 5 (Table XIV) in Fig. 52. Every class value of the  data is 

plotted  up  to I = 0 .2 ,  and  above  this  value only every  fifth  class is shown (for 

clarity  purposes). A typical  computer  printout  (data  record #3) is shown in 

Table XV. The  column  headings are identical with those of Table XIII except 

for 8. and 10.  , which now pertain  to the  modified  Rayleigh density.  The  first 

two classes were  omitted  from  the  chi-square  calculation, owing to  the  noise 

problem  discussed  previously. 

Neither  the CO, data  nor  the  argon  data have  been discussed up to this point 

from  the  standpoint of hypothesis  testing. In Table XVI are listed the percentage 

points of the  chi-square  distribution for 200 degrees of freedom.* So it should  be 
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Figure 46. Mean-square error  ratio  for the modified Rayleigh  and log-normal 
distributions as a function of RMS fading, CJ/I,, . 
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Figure 47. Mean-squareerror  ratio for the modified Rice and log-normal 
distributions as a function of RMS fading, aI/I . 
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NORMALIZED RMS FADING, oI/I0 

Figure 48. Mean-square error of the log-normal distribution 
as a function of RMS fading,u,/I, . 
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Figure 49. Chi-square ratio  for the modified Rayleigh and log-normal 
distributions as a function of RMS fading,a,/I ,, . 
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Figure 50. Chi-square  ratio  for  the modified  Rice  and  log-normal 
distributions as a function of RMS fading, uI/I ,, , 
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Figure 52. Synthesized  log-normal,  modified  Rayleigh,  and  modified  Rice  distri- 
butions for strong  irradiance  fluctuations.  The  normalized RMS irradiance 
Tading (mI/I0) is 0.833. 
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Table XV. Computer  Results for Record # 3  of the  Strong-Scintillation Data 

2. 3 .  

Mean-quare error and chi-square test results for strong 
scintillation data (X = 0 . 4 8 8 ~ ) .  

1; 
0.586E-02 
0.17hE-01 
0.293F-01 
0.410E-01 
0.527E-01 
0. f i44F-01 
0 . 7 b I F - 0 1  
O.878E-01 

O . l l l E  00 
0.995E-01 

0.123E 00 
0.135E 00 
o.14aF  00 
0.158F 0 0  

0 .  IHZE  00 
0.170F 00 

0.205F 00 
0.133E  00 

0.217F 00 
0.228E 00 
0.240E 00 
0.252E 00 
0.263E 00 
O.PJ5E 00 
0.2H7E 00 
0.299E 00 

0.322E 00 
0.310E 00 

0 .345k  00 
0.334E 0 0  

0.357E 00 
0.36YE 00 
0 . 3 8 I E  00 
0 - 3 9 2 E  00 

i).416F 00 
0.404E 00 

0.427E 00 
0.439E 00 
0.451E 00 
0.463E 00 
0.4 74E 0.0 

-- +r+86€ -88 
0.498E 00 

d (1;) 
O.@54E-01 
0.4655 00  
0.120E 01 
0.219E 0 1  

0.937E 01 
0.327E 0 1  

0.5 IHE  0 1  
0.533E 01 
0.53hE 0 1  
0.470E 01 
0.425E 0 1  
0.415E 01 
0 . 3 C l E  01  
0.340E 0 1  
0.325E 0 1  
0.275E 0 1  

0.226E 01 
0.262E 0 I 

0.177E 01 
0.2C9E 0 1  

O.152E 0 1  
0 . 1  70E 01 

0.136E 0 1  
0 .141E 0 1  
0.128t: 0 1  
O . l l l E  0 1  
0.544E 00 
O.857E 0 0  
0.777F 00 
0.777E 00 
0.769E 00 

0.533E  00 
0.6P8E 00 

0.564E 00 

0.5C4E 0 0  
0.521E 00 

0.423E 0 0  
0.517E 00 
0.330E 00 
0.427E  00  
0.372E 00 

- --*e* 
0.260E 00 

. 9 Q . .  

0.540E 00 
0 .94 lE-02 

0.294E CI 
0.174C 0 1  

- w . 4 3 5 E - u f ~  
0 . 3 8 2 t  0 1  

O.460F 0 1  
0.464E 01 
0.454E 01 
0.436E 01 
0.412F: 0 1  
0.386I"OI 
0.35,YE 01 
0.332E 0 1  

0 . 2 A I F  01 
0.306F 0 1  

0.258F 0 1  
-0 .-zxer 
0.217E 01 

O.182E 0 1  
0.198E 01 

0.166E 01 

0.14UE 01 
0.152E 01 

0 . 1 2 8 E  0 1  
0.117E 0 1  
O.lO8E 0 1  
0.991E 00 
0.91ZF 00 
0.. R 3 9 f  OB 
0.77JE 00 
0.712E 00 
0.657E 00 
0.607F: 00 
0.561E 00 

-fh5HE +e 

0.445F 00 
0.480E 00 

0.412E 0 0  
0.382E 00 
0.35SE 0 0  *- 
0.307E 00 

0.483E 01 
0.4556 01 
0.430E 01 
0.405E 01  

0.3l5e-01 
0.3826 0 1  

0.340E 01 
0.321E 0 1  
0.303L 0 1  
O.ZR6E 01 
0.270E 01 
0 .255E 01 
0.240E 01 
0.2275 01 

0 .802E 0 1  
0.214E 0 1  

W i t  8-1 
0.IYOE 01 

O.lBYE 0 1  
0.160E 0 1  
0. 151E 01 
O.142E 0 1  
0.134E 0 1  
U . 1 2 T E - Q f  
0 . 1 1 9 E  0 1  
O.II.3E 01 
O-lObE 0 1  
0.lOOi: 01 

fG7393E-W- 
0.946E 00 

0.843E 00 
0.79% 00 
0.750E 00 
0.70UE 00 

"r630€* 
0.668E 00 

0.594E 00 
0.561E 00 
0.529E 00 
0.499E 00 
0.471E 00 - 
0.419E 00 

0.384E 0 1  0.100E-02 O - l l O E - 0 3  0.565E-01 0.144E 03 0.109E 04  
0.377E 01 0.645E-02 0.644E-02 O.llOE 0 0  0.243E 01 0.R6OE 03 
0.369E 01 0.205E-01 0.2bME-01 0.lbOE 0 0  0.399E 0 2  0.52*E 03 
0.361E 01 0.461E-01 0.612E-01 0.20RE 00 0.449E 0 2  O.ZO1E 03 
0.351E 01 0.856E-01 O.lO6E 00 0.252E 00 0.121E 02 0.125E 0 2  Q.3Tu-t u 1  U . L J I t  u u  u . l m  u u  G.-  - - .>"- . -ut u 
0.329E 0 1  0.197E 00 0 . 2 1 l E  0 0  0.335E 0 0  0.169E 0 2  O . T l 6 E  0 3  
0.318F 01 0.26OE 00 0.265E 00 0.372E 00 0.238E 0 2  0.327F 03 
0.306F 01 0.323E 00 O.318E 00 0.408E 0 0  0.342E 02 0.419F 03 
0.294E 0 1  0.378E 00 0.3bPE 0 0  0.441E 00 0.629E 01 0.278E 03 
0.282E 01 0.427E 00 0.418E 00 0.473E 0 0  0.967E 00 0.2lOE 03 
Dirtarm u . 4 r o m  U.4DJt V U  U.3UJc VU i r . . # I J c  U I  u - m  
0.259E 01  0.517E 00 0.505E 00 0.531E 00 0.358E 00 O.12IE 03 
0.247E 0 1  0.557E 00 0.544E 00 0.557E 0 0  0.453E 0 0  0.133E 03 
0.235E 01 0.595E 00 0.580E 00 0.582E 00 0.267E 0 1  0.135E 0 3  
O.ZZ4E 0 1  0.627E 0 0  O . 6 l t E  0 0  O.bU6bE UO 0 . 2 2 4 f L W  @.63;?E 02 
0.213E 0 1  0.658E 00 0.643E 00 0.628E 00 0.129E 00  0.620E 02 
W . P  G - o C b l  uu i r . i m  G - i i t C  u i  O 
0.192E 0 1  0.709E 00 0.69hE 00 0.669E 0 0  0.R08E 00 0.206E 0 2  

.ruw" 
0.173E 0 1  0.749E 00 0.740E 00 0.705E 00 0.162E 01 0.599E 0 1  
0.182E 0 1  0.729E 00 0.719E 00 0 . 6 R B E  00 8-.527E 01  0.445.E 01 

0 . 1 6 3 ~  0 1  0 . 7 6 7 ~  0 0  0 . 7 6 0 ~  0 0  0 . 7 2 2 ~  00  0.30s~ 0 1  0 . 1 4 4 ~  nt 
0.154E 0 1  0.783E 00 0.778E 00 0.738E 0 0  0.400E 0 1  0.718E-01 
-b.tQfrE O i  G . " O U  6." G . ' t * P  
0 . 1 3 8 E  0 1  0.815E 0 0  OsR09E 00 0.767E 0 0  0.909E-04 0.147E 01 
0.130E 0 1  0.828E 00 0.823E 0 0  0.78CE 00 0.83iE 033 -0.5BlE-Ot 
0.122E 0 1  0.R39E 00 0.835E 00 0.792E 00 0.396E 0 1  0.315E 0 1  
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clear  that  for  every  data  record  tabulated in this  section,  the  hypothesis  that  the 

data  sample  came  from a log-normal,  Rayleigh, or Rice  distribution  can be tested 

at any level of significance (i.e. , any a value).  However,  it is doubtful  that this is 

a very  useful  approach  in  this  experiment  since  in  each  data  record a large num- 

ber of classes had zero  observations. One of the  generally  accepted  rules  for 

applying  hypothesis  testing  to  the  chi-square  goodness-of-fit  parameter is that 

every  class of the  measured  density  function  contain one o r  more  observations. 

In this  experiment we attempted  to  comply with this  requirement  by  coding  the 

analysis so that  the  first  class contained  the  lowest  irradiance  signal  en- 

countered in the  data  and  the last class  contained  the  highest  irradiance  level 

in  the  data. Even so, there  were  sometimes as many as 80 and  often  about 50 
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classes which  had zero  observations  at  the end of a 20-second data run. So 

it is doubtful that hypothesis  testing has much  utility  under  these  conditions. 

This  section  has shown that  the  probability  density  function  for  irradiance 

fluctuations  has  been  tested  under  very weak and  strong  fluctuation  conditions. 

For weak fluctuations,  the  log-normal  and  Rice  distributions were found to  be 

equally  compatible with the  data;  for  strong  fluctuactions,  the  log-normal  dis- 

tribution appears to fit  the  data  much  more  accurately  than  either  the  Rice  or 

the  Rayleigh  distribution. 

2.6 Summary and Conclusions 

This  dissertation  has  reviewed  the  optical  propagation  problem  from first 

principles  and  has  presented a listing of available  theoretical  results  for  various 

source  types  and  propagation  paths.  The Obukohov-Kolmogorov model of tur- 

bulence  has  been  emphasized,  since  it  appears  to be the  most  realistic  and ac- 

curate  statistical  description. 

The results of a group of experiments conducted over  0,4-km and 1.17-km 

near-ground  horizontal  ranges  have  also  been  presented.  The  experiments  were 

directed  toward  mersuring  parameters which control  the  quality of a communica- 

tion  channel.  Resalts  were  compared  to Rytov-based propagation  theory as de- 

veloped  in  the United States  and  the  Soviet Union. 

Signal  fading characteristics as denoted by the  variance of log  amplitude 

were  measured  simultaneously for visible  and  infrared  beams which had tra- 

versed  the  same path.  The results  were  in  excellent  agreement with  theory  and 

show clearly  the  reduction  in  fading which can  be  obtained with  longer-wavelength 
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signal sources.  The  valid  parameter  ranges of Rytov  theory are known to  be 

limited by the  saturation of the  log-amplitude  variance. F'ublished results  for 

the  saturation  level are contradictory.  Early  experiments  indicated  saturation 

at about 0.2,  but recent  results  indicate  that the  saturation  level is closer to 0.6. 

A possible  explanation  suggested  by  our  experimental data for  this  discrepancy 

has  been  discussed. Data reduction  techniques which assume  log-normality  for 

amplitude  statistics  appear  to  be  very  limited  in  accuracy. 

Diversity  communication  techniques  have  been  investigated  through  the 

spatial  and  spectral  irradiance  correlation  functions. The respective  log-ampli- 

tude  correlation  functions  were  transformed  to  the  irradiance  domain so as to 

permit  direct  experiment-theory  comparisons.  The  spatial  correlation  measure- 

ments showed good agreement with theory, but an extreme  sensitivity  to  instru- 

mentation  accuracy and dynamic  range  was  noted.  Judged by these  measurements, 

it appears  that  the  correlation  distance  for  irradiance  fluctuations  can  be  ac- 

curately  evaluated  through Rytov theory.  The  spectral  correlation  measurements 

exhibited  an  unacceptably  large  scatter and  did not show the  wavelength  dependence 

predicted by theory. A typical  measured  correlation  for  sources at 0 . 6 3 3 ~  and 

0 . 4 8 8 ~  which  had traversed  the  same  path  was 0.7. This indicates  that  spectral 

diversity  techniques  in  the  visible will not  be an  effective  means of overcoming 

turbulence-induced  signal  fading. We note,  however,  that  the same  measurements 

indicate  that  the  coherent bandwidth limitation which exists  at  radio  frequencies 

is not a significant  problem at optical  frequencies.  Therefore,  atmospheric 

turbulence will not impose a limitation on the  information bandwidth of an  optical 

carrier from a coherency  standpoint. 
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Analysis of the  quality of a communication  system  (particularly a digital 

system) requires knowledge of the  density  function of the amplitude statistics. 

Data  have  been  obtained,  analyzed,  and  compared  to  three  suggested  model 

densities  (log-normal,  Rayleigh, and Rice). A mean-square e r r o r  and a chi- 

square test have  been  applied as the criteria of comparison.  Under weak fluctua- 

tions,  the  log-normal  and  Rice  distributions  were found to  be  equally  well  suited 

to  the  data;  under  strong  fluctuations,  the  log-normal  distribution was  an  order of 

magnitude closer  to  the  data  in  both  the  mean-square-error and the  chi-square 

tests. 

I 
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Appendix A 

Determination of the Number of Independent  Samples  for Processes With 

Arbitrary Spectral Densities 

In this section we consider  the  problem of finding the  number of independent 

samples N that one obtains  in a continuous data run of length T taken from a 

random  process x( t ). 

First  consider  the  case  where x has a one-sided spectral  density Cx ( f )  which 

is flat  -baseband, i. e .  , 

and 

Gx ( f )  = - K 
B ,  for 0 5 f I B  , 

cx ( f )  = 0 ,  for f > B ; 

then,  the  autocorrelation of x, Rx (7  ) is 

Rx (0) E[x2] K 643) 

and the first zero of Rx (7 )  occurs at 7 = 1/2B. Therefore,  samples  taken at 

times 1/2B apart are uncorrelated and (for normal  processes) independent. In 

a data run of length T, it is now clear that one can  obtain at most T/1/2B = 2BT 
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independent samples. Note also that 

Now consider the case where Gx ( f ) is not flat-baseband  but, rather, has an 

arbitrary shape. Then  one can  evaluate Rx ( 7 )  through the  usual  Fourier 

Transform  relation. Then 

where Beq is the equivalent rectangular bandwidth of the  process.  Therefore, 

where y ( r )  is the normalized  correlation coefficient defined for stationary 

process as 

So in this case the number of independent samples N obtained in a record of length 

T is 
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In practice, two approximate  techniques  permit a quick evaluation of the above 

integral. Many physical  processes have autocorrelation  functions which can  be 

closely  approximated by the exponential f i t  e-a171. In this case 

= 2 -  
UT 

Alternately one may approximate ~ ( 7 )  by a linear fit, i.e., 

elsewhere. In this case, 

N = U T .  
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Appendix B 

Range and Wavelength Dependence of Log-Amplitude Variance for 

Arbitrary  Turbulent Spectra 

Consider a refractive  index  structure function of the form 

where u2 is an  arbitl'ary  constant  and p is also a constant  in  the  range 0 < p < 2. 

Using Tatarskifs2  results,  the  one-dimensional  spatial  spectrum  corresponding 

to Eq.  B1 is 

For isotropic  random  fields,  the  three-dimensional  spectrum [@(, ) ]  is related 

to  the  one-dimensional  spectrum [ W (  K ) ] through 

Therefore, 

where 

b 
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For the  case  where  the  field  quantities are homogeneous  and  isotropic  in  planes 

perpendicular  to  the  direction of propagation,  the  covariance of log  amplitude 

can be written as 

where F( K ,  0 )  is the  two-dimensional  spatial  spectrum  in  the  measurement  plane. 

For  infinite  plane -wave propagation  through  homogeneous  turbulence,  Tatarski2 

has shown in  his Eq. 7.50 that 

F(K,  0 )  = n k 2 L ( 1  - k s i n  4) K 2  d ( K ) ,  

where 

k is the wave number of the  optical  carrier, 

L is the  path  length  through  the  turbulence. 
and 

Substitute Eqs.  B4 and B6 into Eq.  B5; the  log-amplitude  covariance  becomes 

and the  variance is 
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Let 

and 

and  substitute  into  Eq. B8. Then 

So, for  infinite  plane-wave  propogation,  the  log-amplitude  variance  exhibits a 

k3/*-pI2 wave-number  dependence and a L3/2tP/2 range dependence. For spheri- 

cal-wave  propagation  through  homogeneous  turbulence,  the  log-amplitude  variance 

equation  takes  the  form 

L 
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where C(x) and S( x)  are the Fresnel  integrals 

and 

Let 

and substitute Eq. B4 into Eq. B10. Then 

So, again,  the  log-amplitude  variance  has a wave-number  dependence k3l2-PI2  and 

a range dependence L3/2tP/2 ,  
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Appendix C 

Dynamic Range Considerations  in the Measurement of Log- 

Amplitude Variance 

One of the  major  problems confronting the  experimenter as he investigates 

amplitude  fluctuations at optical  frequencies is the  dynamic range of the  instru- 

mentation.  The  amplitude  fluctuations are characterized by short  periods of 

very high level  (compared  to  the  mean) and somewhat longer  periods of low signal 

level  (compared  to  the  mean).  Accurate  recording and meaningful statistical 

analysis of this type of phenomena require extended instrumental dynamic range. 

The problem  has  recently been looked at  analytically  for  the first time in Ref. 46 

In this  analysis,  it  was  assumed  that  the log-amplitude variance u t  was evaluated 

through  irradiance  statistics by means of 

where 

I o  E(1) 

and 

It was  also  assumed that the  available dynamic range was evenly  divided  about I ,, . 
That is, if I, and I, are the  highest  and  lowest  signals  that  can  be handled by the 
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instrument,  then  the  fluctuating  signal is sealed so that 

A numerical  integration of the  right-hand  side of Eq. C1 was  carried out for  various 

D; and  dynamic  range  values.  The  results are presented  in a graph of measured 

log-amplitude  variance ( CJ; ) versus  actual log-amplitude  variance (~2) for  

various  dynamic  ranges. A typical  result is that  an 

meas. 

I" 
I o  - 
- ' 18 

is required  to  measure a relatively weak .-X = 0.2. This range (182) is approx- 

imately  the  state-of-the-art  in FM magnetic  tape  recording. 

It appears that that  these  results may  be unduly discouraging. If one is actually 

measuring CJ? through Eq. 1, then E( I ) and E(  I ) are the  only  statistics of inter- 

est and  the  available  dynamic  range would not  be  alloted  equally  about I o  ; rather,  

it would be biased so as to  accommodate peak signals. In addition,  the  numerical 

integration  which  produced  the  results  did  not  clip signals which exceeded  the al- 

lowed range  but,  rather,  set  these  signals  equal  to  zero. The  amount of e r ro r  

introduced by this  technique  could  be  substantial. In this  appendix, a different 

analysis is presented which  may be  more  accurate  in  some  cases. 

It is assumed  that  the  log-amplitude  variance is measured not through Eq. C1 

but,  rather, by evaluation of the  probability  density  function  for  the  variable  log 
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amplitude ( 4  ) , where 

and 
n = sample s ize ,  

and by computing  moments E[$,] , E [( .ei  -;ei) '1 in the  usual  manner. In this 

case it is efficient  to  allot  the  dynamic  range as above, i.e., 

Our  model for the system is 

and 
1 

'i 
- - - -  ZnR = - B, for .ei ,  < R . 

out  In 

The system is shown in terms of irradiance  levels in Fig. C1. We assume log 

amplitude to be  normal with mean and variance m i  . That is, 8 is n (px,  01 ) . 
So, the  measured  mean-square value of 4 is 

Let 
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Then, y i s   n (0 ,  m j ) ,  and 

J -B-q 

Consider  the  second  and  third  integrals. If we assume B > Ip$l , then  we can 

change the  limits with small   error  so that 

where 

The first integral in Eq. C5 can  be expanded  and evaluated by parts. 
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The first part  is 

where 

The  second part  is 

The first integrand is odd and  therefore  vanishes.  Therefore, 

where n (0 ,  ) in  the  interval ( B + p t  to B - ~ J J )  has  been  approximated  by its 

value at the  midpoint B, and 

1 
Z(x) = - 6 exp [- $1 - 
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The third part is 

Let 

Then, 

where r ( x )  is the  complete Gamma Function 

and I (  u, PI  is the  incomplete Gamma Function  Ratio 
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Simplifying and combining terms, we have 

Realizing that the  dynamic  range  constraint is much less severe  for  measuring 

E{J) , we  assume ELXI - ; then - 

The  result is now in a form  such  that  various  strengths of turbulence (ut ) and dy- 

namic  ranges (B) can  be  put in and  the  measured  strength of turbulence ut 
evaluated  from  tables.  The  calculation of the  right-hand  side of Eq. C14 requires 

that  one  recognize  that ~4 = - .;e', which has  been shown in Eq. 103 of Section 2.4. 

( meas.) 

A s  an example,  consider a data  analysis  system which has a signal-to-noise 

ratio of 43 db. As an  analog  system, it has a definite  upper  limit ( I, ) but its 

lower  limit is not  defined.  However,  the  noise  level of the  system may  be  defined 

as the  smallest signal level  which  can  be  accurately  analyzed. Thus, 
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R = 11.9,  

and 

Eq. C14 can now be  evaluated for various  values.  The  results of this  calcula- 

tion are shown in Fig. C2, where  the  points  represent  the  actual  calculations. 

Some  caution  must  be  used when evaluating Eq. C14 for small "/.;e values, 

since  the  approximations  used in the  derivation  may lose accuracy.  For d m 4  > 2 ,  

the  f irst   term in Eq. C14 dominates.  Specifically, if 

02 
" - B -  meas. . 2 , then, - = . 7 5  ; 

Dl? 

if 

Defining the  dynamic  range OR) of a device as its signal-to-noise  ratio,* 

DR = 20 l o g  (2) (2) = 20 logR2 40 l o g  R ,  

*With this   def init ion,  our  dynamic  range is numerical ly   twice  that   used  in  Ref .  46 with  units  in dB. 

18 2 



Therefore, DR = 40 loge2B = 80 B l o g  e 

= 34.7 B . 

and 

Fig. C3 plots I and 11. 

DR = 86.7 a t  (5% Accuracy) 

DR = 69.4 at  (25% Accuracy). 

I 

((316) 
II 

I I N  

Figure C1 

Figure C2 
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